

© Decawave 2015 This document is confidential and contains information which is proprietary to Decawave Limited. No reproduction

is permitted without prior express written permission of the author

SOURCE CODE GUIDE

DECARANGERTLS ARM SOURCE CODE

Understanding and using the

DecaRangeRTLS ARM source code

Version 2.3

This document is subject to change without notice.

DecaRangeRTLS ARM Source Code Guide

© Decawave 2015 This document is confidential and contains information which is proprietary to
Decawave Limited. No reproduction is permitted without prior express written permission of the author

 Page 2 of 30

DOCUMENT INFORMATION

Disclaimer

Decawave reserves the right to change product specifications without notice. As far as possible changes to

functionality and specifications will be issued in product specific errata sheets or in new versions of this document.

Customers are advised to check the Decawave website for the most recent updates on this product

Copyright © 2015 Decawave Ltd

LIFE SUPPORT POLICY

Decawave products are not authorized for use in safety-critical applications (such as life support) where a failure of

the Decawave product would reasonably be expected to cause severe personal injury or death. Decawave

customers using or selling Decawave products in such a manner do so entirely at their own risk and agree to fully

indemnify Decawave and its representatives against any damages arising out of the use of Decawave products in

such safety-critical applications.

Caution! ESD sensitive device.

Precaution should be used when handling the device in order to prevent permanent damage

DecaRangeRTLS ARM Source Code Guide

© Decawave 2015 This document is confidential and contains information which is proprietary to
Decawave Limited. No reproduction is permitted without prior express written permission of the author

 Page 3 of 30

DISCLAIMER

This Disclaimer applies to the DecaRanging RTLS-ARM source code and the DecaRanging RTLS-PC source
code (collectively “Decawave Software”) provided by Decawave Ltd. (“Decawave”).

Downloading, accepting delivery of or using the Decawave Software indicates your agreement to the terms of
this Disclaimer. If you do not agree with the terms of this Disclaimer do not download, accept delivery of or
use the Decawave Software.

Decawave Software incorporates STSW-STM32046 (STM32F105/7, STM32F2 and STM32F4 USB on-the-go
Host and Device library (UM1021)) software (“STM Software”) provided to Decawave by ST Microelectronics
(“STM”) under STM’s Liberty V2 software license agreement dated November 16th 2011 available here (“STM
Software License Agreement”). Downloading, accepting delivery of or using STM Software as incorporated in
Decawave Software indicates your agreement to the terms of the STM Software License Agreement and in
particular the requirement that the STM Software be used only with STM microcontrollers and not with
microcontrollers from any other manufacturer. If you do not wish to accept the terms of the STM Software
License Agreement then you may still use the Decawave Software on the condition that you do not use the
STM Software incorporated therein.

Decawave Software is solely intended to assist you in developing systems that incorporate Decawave
semiconductor products. You understand and agree that you remain responsible for using your independent
analysis, evaluation and judgment in designing your systems and products. THE DECISION TO USE
DECAWAVE SOFTWARE IN WHOLE OR IN PART IN YOUR SYSTEMS AND PRODUCTS RESTS
ENTIRELY WITH YOU.

DECAWAVE SOFTWARE IS PROVIDED "AS IS". DECAWAVE MAKES NO WARRANTIES OR
REPRESENTATIONS WITH REGARD TO THE DECAWAVE SOFTWARE OR USE OF THE DECAWAVE
SOFTWARE, EXPRESS, IMPLIED OR STATUTORY, INCLUDING ACCURACY OR COMPLETENESS.
DECAWAVE DISCLAIMS ANY WARRANTY OF TITLE AND ANY IMPLIED WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT OF ANY
THIRD PARTY INTELLECTUAL PROPERTY RIGHTS WITH REGARD TO DECAWAVE SOFTWARE OR
THE USE THEREOF.

DECAWAVE SHALL NOT BE LIABLE FOR AND SHALL NOT DEFEND OR INDEMNIFY YOU AGAINST
ANY THIRD PARTY INFRINGEMENT CLAIM THAT RELATES TO OR IS BASED ON THE DECAWAVE
SOFTWARE OR THE USE OF THE DECAWAVE SOFTWARE WITH DECAWAVE SEMICONDUCTOR
TECHNOLOGY. IN NO EVENT SHALL DECAWAVE BE LIABLE FOR ANY ACTUAL, SPECIAL,
INCIDENTAL, CONSEQUENTIAL OR INDIRECT DAMAGES, HOWEVER CAUSED, INCLUDING WITHOUT
LIMITATION TO THE GENERALITY OF THE FOREGOING, LOSS OF ANTICIPATED PROFITS,
GOODWILL, REPUTATION, BUSINESS RECEIPTS OR CONTRACTS, COSTS OF PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
INTERRUPTION), LOSSES OR EXPENSES RESULTING FROM THIRD PARTY CLAIMS. THESE
LIMITATIONS WILL APPLY REGARDLESS OF THE FORM OF ACTION, WHETHER UNDER STATUTE, IN
CONTRACT OR TORT INCLUDING NEGLIGENCE OR ANY OTHER FORM OF ACTION AND WHETHER
OR NOT DECAWAVE HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES, ARISING IN ANY
WAY OUT OF DECAWAVE SOFTWARE OR THE USE OF DECAWAVE SOFTWARE.

You are authorized to use Decawave Software in your end products and to modify the Decawave Software in
the development of your end products. HOWEVER, NO OTHER LICENSE, EXPRESS OR IMPLIED, BY
ESTOPPEL OR OTHERWISE TO ANY OTHER DECAWAVE INTELLECTUAL PROPERTY RIGHT, AND NO
LICENSE TO ANY THIRD PARTY TECHNOLOGY OR INTELLECTUAL PROPERTY RIGHT, IS GRANTED
HEREIN, including but not limited to any patent right, copyright, mask work right, or other intellectual property
right relating to any combination, machine, or process in which Decawave semiconductor products or
Decawave Software are used.

You acknowledge and agree that you are solely responsible for compliance with all legal, regulatory and
safety-related requirements concerning your products, and any use of Decawave Software in your
applications, notwithstanding any applications-related information or support that may be provided by
Decawave.

http://www.st.com/st-web-ui/static/active/en/resource/legal/legal_agreement/license_agreement/software_license_agreement_liberty_v2.pdf?sc=software_license_agreement_liberty_v2

DecaRangeRTLS ARM Source Code Guide

© Decawave 2015 This document is confidential and contains information which is proprietary to
Decawave Limited. No reproduction is permitted without prior express written permission of the author

 Page 4 of 30

Decawave reserves the right to make corrections, enhancements, improvements and other changes to its
software at any time.

Mailing address: -

Decawave Ltd.,
Adelaide Chambers,
Peter Street,
D08 T6YA,
Dublin 8

Copyright (c) 01/04/2015 by Decawave Limited. All rights reserved.

DecaRangeRTLS ARM Source Code Guide

© Decawave 2015 This document is confidential and contains information which is proprietary to
Decawave Limited. No reproduction is permitted without prior express written permission of the author

 Page 5 of 30

TABLE OF CONTENTS

1 OVERVIEW ... 7

2 DESCRIPTION OF DECARANGERTLS ARM CODE STRUCTURE ... 8

2.1 TARGET SPECIFIC CODE ... 8

2.2 ABSTRACT SPI DRIVER – SPI LEVEL CODE.. 9

2.3 DEVICE DRIVER – DW1000 DEVICE LEVEL CODE ... 9

2.4 INSTANCE CODE ... 9

2.4.1 Operating mode – Tag .. 10

2.4.2 Operating mode – Anchor #0 .. 11

2.4.3 Operating mode – Anchors #1 and #2 .. 12

2.4.4 Operating mode – Anchor #3 .. 12

2.4.5 Range Result ... 12

2.4.6 Ranging Method ... 13

2.5 TOP LEVEL APPLICATION CODE .. 13

2.6 FORMAT OF RANGING RESULTS AS SENT TO USB/VIRTUAL COM PORT ... 14

2.7 COMPLETE LIST OF SOURCE CODE FILES ... 15

3 RANGING ALGORITHM .. 17

3.1 DECARANGERTLS ARM APPLICATION’S TAG/ANCHOR TWO-WAY RANGING ALGORITHM .. 17

3.2 PRACTICAL CONSIDERATIONS FOR RANGING IN A REAL PRODUCT .. 17

3.3 FRAME TIME ADJUSTMENTS ... 18

4 MESSAGES USED IN TREK1000 TWR .. 19

4.1 GENERAL RANGING FRAME FORMAT ... 19

4.2 POLL MESSAGE... 20

4.3 RESPONSE MESSAGE ... 20

4.4 FINAL MESSAGE ... 20

4.5 MESSAGE TIMINGS ... 21

4.6 LOCATION RATES .. 22

5 BUILDING AND RUNNING THE CODE ... 23

5.1 EXTERNAL LIBRARIES ... 23

5.2 BUILDING THE CODE WITH COOCOX IDE ... 23

5.3 BUILDING CONFIGURATION OPTIONS .. 23

6 OPERATIONAL FLOW OF EXECUTION ... 24

6.1 INTRODUCTION .. 24

6.2 THE MAIN APPLICATION ENTRY .. 24

6.3 INSTANCE STATE MACHINE ... 24

6.3.1 Initial state: TA_INIT ... 25

6.3.2 State: TA_SLEEP_DONE ... 25

6.3.3 State: TA_TXPOLL_WAIT_SEND .. 25

6.3.4 State: TA_TXE_WAIT ... 26

6.3.5 State: TA_TX_WAIT_CONF .. 26

6.3.6 State: TA_RXE_WAIT ... 26

6.3.7 State: TA_RX_WAIT_DATA .. 26

6.3.8 State: TA_TXFINAL_WAIT_SEND ... 27

DecaRangeRTLS ARM Source Code Guide

© Decawave 2015 This document is confidential and contains information which is proprietary to
Decawave Limited. No reproduction is permitted without prior express written permission of the author

 Page 6 of 30

6.3.9 State: TA_TX_WAIT_CONF (for Final message TX).. 27

6.3.10 CONCLUSION .. 27

7 REFERENCES .. 29

8 DOCUMENT HISTORY .. 29

9 MAJOR CHANGES .. 29

10 FURTHER INFORMATION ... 30

DecaRangeRTLS ARM Source Code Guide

© Decawave 2015 This document is confidential and contains information which is proprietary to
Decawave Limited. No reproduction is permitted without prior express written permission of the author

 Page 7 of 30

1 OVERVIEW

This document, “DecaRangeRTLS ARM Source Code Guide” is a guide to the application source code of

Decawave’s “TREK1000” two-way ranging RTLS demonstration application running on the ARM

microcontroller on the EVB1000 development platform.

This document should be read in conjunction with the “TREK1000 User Manual” which gives an overview of

DW1000 RTLS evaluation kit (TREK1000) and describes how to operate the DecaRangeRTLS Application.

This document discusses the source code of the DecaRangeRTLS ARM application, covering the structure of

the software and the operation of the ranging RTLS demo application particularly the way the range is

calculated.

Section 6 is written in the style of a walkthrough of execution flow of the software. It should give a good
understanding of the basic operational steps of transmission and reception, which in turn should help
integrating/porting the ranging function to customers platforms.

This document relates to the following versions: "DecaRangeRTLS ARM 2.25" application version and "DW1000

Device Driver Version 04.00.05" driver version. The device driver version information may be found in

source code file “deca_version.h”, and the application version is specified in “dw_main.c”.

Figure 1 below shows the layered structure of the DecaRangeRTLS application, giving the names of the main

files associated with each layer and a brief description of the functionality provided at that layer.

Figure 1: Software layers in DecaRange RTLS ARM application

The layers, functions and files involved are described in the following section.

Target Specific

SPI Code

Physical SPI interface

Abstract SPI Driver

Device Driver

Instance

TWR

Application

SPI wires to connect to the SPI port on

DW1000 IC or Evaluation board

Code specific to reading/writing via the

SPI of the target microprocessor

Generic SPI functions, should be easily

portable to SPI of any MicroController

Specific code for control/access of

DW1000 device functionality

Instead of MAC, this simple state machine

exchanges messages to figure out the

distance between two units using TOF

The TWR application runs “Instance”, which

calculates the range.

The USB application outputs the

information over the Virtual COM port.

deca_spi.c

deca_device.c

instance.c

main.c
usb.c

Name of file Layer Functional Description

USB

Application

DecaRangeRTLS ARM Source Code Guide

© Decawave 2015 This document is confidential and contains information which is proprietary to
Decawave Limited. No reproduction is permitted without prior express written permission of the author

 Page 8 of 30

2 DESCRIPTION OF DECARANGERTLS ARM CODE STRUCTURE

With reference to Figure 1X, the identified layers are described in more detail below.

2.1 Target Specific Code

In the Cube MX version of the project, the ST Microelectronics Cube MX tool is used to generate the low-

level ARM (HAL) code. The main.c contains the various peripheral initialisations and definitions.

In the CooCox IDE based project the low-level ARM specific code can be found in \src\platform\ – the two

files port.c and port.h define target peripherals and GPIOs which are enabled and in use i.e. SPI1 for SPI

communications with DW1000, SPI2 for SPI communications with LCD, other GPIO lines for application

configuration and control.

SPI1:

#define SPIx SPI1

#define SPIx_GPIO GPIOA

#define SPIx_CS GPIO_Pin_4

#define SPIx_CS_GPIO GPIOA

#define SPIx_SCK GPIO_Pin_5

#define SPIx_MISO GPIO_Pin_6

#define SPIx_MOSI GPIO_Pin_7

The SPI1 peripheral is used to communicate to the DW1000 SPI bus.

Interrupt line:

#define DECAIRQ GPIO_Pin_8

#define DECAIRQ_GPIO GPIOA

#define DECAIRQ_EXTI EXTI_Line8

#define DECAIRQ_EXTI_PORT GPIO_PortSourceGPIOA

#define DECAIRQ_EXTI_PIN GPIO_PinSource8

#define DECAIRQ_EXTI_IRQn EXTI9_5_IRQn

#define DECAIRQ_EXTI_USEIRQ ENABLE

The DW1000 interrupt line is connected to GPIOA pin 8. Note: For MP the line is active high.

LCD driver:

#define SPIy SPI2

#define SPIy_GPIO GPIOB

#define SPIy_CS GPIO_Pin_12

#define SPIy_CS_GPIO GPIOB

#define SPIy_SCK GPIO_Pin_13

#define SPIy_MISO GPIO_Pin_14

#define SPIy_MOSI GPIO_Pin_15

The SPI2 peripheral is used to communicate with the LCD.

Application configuration switches (S1):

#define TA_SW1_3 GPIO_Pin_0

#define TA_SW1_4 GPIO_Pin_1

#define TA_SW1_5 GPIO_Pin_2

#define TA_SW1_6 GPIO_Pin_3

#define TA_SW1_7 GPIO_Pin_4

#define TA_SW1_8 GPIO_Pin_5

#define TA_SW1_GPIO GPIOC

DecaRangeRTLS ARM Source Code Guide

© Decawave 2015 This document is confidential and contains information which is proprietary to
Decawave Limited. No reproduction is permitted without prior express written permission of the author

 Page 9 of 30

Configuration switch (S1) is used to choose between the Anchor and Tag modes and various channel

configurations. See “TREK1000 User Manual” for more details.

The src\compiler\compiler.h contains the standard library files which can be replaced if desired, (e.g. if one

wishes to use functions optimised for smaller code size, say).

2.2 Abstract SPI Driver – SPI Level code

The file src\platform\deca_spi.c provides abstract SPI driver functions openspi(), closespi(), writetospi() and

readfromspi(). These are mapped onto the ARM microcontroller SPI interface driver.

2.3 Device Driver – DW1000 Device Level Code

The file deca_device_api.h provides the interface to a library of API functions to control and configure the

DW1000 registers and implement functions for device level control. The API functions are described in the

“DW1000 Device Driver Application Programming Interface (API) Guide” document.

2.4 Instance Code

The instance code (in src\application\instance_*.c) provides a two-way ranging RTLS demonstration

application. This instance code sits where the MAC and application would normally reside. For expediency

in developing the ranging RTLS demonstration to showcase ranging and performance of the DW1000, the

ranging RTLS demo application was implemented directly on top of the DW1000 driver API.

The instance runs in different modes (Tag or Anchor) depending on the role configuration set at the

application layer. The Tag and Anchor modes operate as a pair to provide the two-way ranging demo

functionality between two units. The two-way ranging RTLS demo application is implemented by the

companion state machines in functions tag_app_run() and anch_app_run(), called from function tag_run()

and anch_run(), which is the main entry point for running the instance code. In TREK single tag ranges up to

4 anchors and then a separate DecaRangeRTLS PC application can then use the ranges to calculate tag’s

location relative to anchors’ and display on the GUI.

DecaRangeRTLS ARM Source Code Guide

© Decawave 2015 This document is confidential and contains information which is proprietary to
Decawave Limited. No reproduction is permitted without prior express written permission of the author

 Page 10 of 30

Figure 2: Brief illustration of tag instance operation

2.4.1 Operating mode – Tag

Once powered on the tag unit will try and range to 4 anchors and then go to sleep. After a period

(superframe/scheduling period, Tsf) it will wake up and range to 4 anchors again. The tag ranges to all 4

anchors simultaneously (as described in Figure 3 below). It sends a Poll as a broadcast message (destination

address is set to 0xFFFF), receives any responses, and then sends a Final, again as a broadcast. This is

outlined in Figure 2.

The default scheduling period is 280 ms for 110 kbps or 100 ms for 6.81 Mbps mode. This is the period from

the time that the tag sends its poll, completes the ranging exchanges or times out to the same instant of

sending the poll again. These scheduling period timings are related to the duration of the ranging

interactions and the number of interaction slots defined for the superframe, (described below). Note that

the 6.81 Mbps mode could have a faster update rate, but a 10 Hz update rate was decided and defined for

the 6.81 Mbps mode superframe.

Figure 3 gives an overview of the superframe structure and the frame timings are given in Figure 8 and

Figure 9.

TAG

SLEEP

Prepare Poll Message
Set WAIT4RESP with RxOnDelay,

 using PTO and count to receive up to 4
responses before sending the Final

WAKE UP

Tag sends Poll (to anchors) and
awaits Responses, before sending
the Final and going back to Sleep

Power On
Initialise and configure the DW IC,

initialise and configure Tag
application (e.g. set the address,

calculate the response times)

 TX done
1. if Poll sent calculate the Final TX time),
go to RX event processing
2. if Final sent go to Sleep

 RX event
1. if RX frame (count++),
2. if TO (count++)
3. if count 4 - we have received 4 events,
if any one was a good RX then send the
Final; else stay in RX to receive next
response.

TX frame

RX on

DecaRangeRTLS ARM Source Code Guide

© Decawave 2015 This document is confidential and contains information which is proprietary to
Decawave Limited. No reproduction is permitted without prior express written permission of the author

 Page 11 of 30

Figure 3: Tag TWR RTLS time profile

To support multiple tags (without interfering), we are using a TDMA approach. In our TREK example modes

there are 10 slots in the superframe. Each slot is 28 ms in 110 kbps modes and 10 ms in 6.81 Mbps modes,

and, as we assign one slot to each tag a maximum of 8 tags can be supported. Two slots are reserved for

anchor to anchor ranging.

The anchor #0, is responsible for assigning and maintaining tags into their own slots.

2.4.2 Operating mode – Anchor #0

Firstly, Anchor #0 operates to assign activity slots to each of the tags so that their ranging exchanges do not

mutually interfere. Anchor #0 does this by including a sleep time adjustment value every time it responds to

a tag’s ranging attempt. This sleep time adjustment is calculated to position each of the tags to wake-up in a

separate slot, based on their address (#0 to #7). This is outlined in Figure 4Figure 2.

Secondly, Anchor #0 reports the results of all ranging exchanges via its USB port. It does this by listening for

and receiving time-of-flight results that the other anchors embed in their response messages, and gathering

these along with its own calculated TOF results, before sending a full set of ranging results for each tag to

and attached PC via its USB port.

Anchor #0 also starts anchor to anchor ranging, which is used for auto-positioning feature. Last two slots of

the superframe are used for this. Anchor #0 initially ranges to anchors #1 and #2 and then anchor #1 ranges

Superframe (n)

Slot 0 Slot 1 Slot 2 Slot 3 Slot 4 Slot 5 Slot N Slot 0

Superframe (n+1)

Slot 1

TWR T0 to
A0, A1, A2, A3

Tsf

Ts

TX
Poll

A0 TX
Resp-
onse

TX
Final

Ts

Tre1

Tfinr

Guard
Time

TWR T1 to
A0, A1, A2, A3

Ts

Guard
Time

A1 TX
Resp-
onse

A2 TX
Resp-
onse

A3 TX
Resp-
onse

Tg

Tre2
Tre3

...

Td

Tre4

DecaRangeRTLS ARM Source Code Guide

© Decawave 2015 This document is confidential and contains information which is proprietary to
Decawave Limited. No reproduction is permitted without prior express written permission of the author

 Page 12 of 30

to anchor #2. The resultant six ranges are outputted over the USB so that the anchor positions relative to

each other can be calculated.

Figure 4: Brief illustration of anchor instance operation

2.4.3 Operating mode – Anchors #1 and #2

Anchor #1 and #2 are involved in tags to anchor ranging and also anchor to anchor ranging.

2.4.4 Operating mode – Anchor #3

Anchor #3 is only involved in the tag to anchor ranging. It ignores any anchor to anchor ranging messages.

2.4.5 Range Result

The ranging results are output via the USB port. Tags will report any ranges results it receives from the

anchors it ranges with, as returned to it by the anchor’s Response message.

ANCHOR

RX on

When anchor #0 receives the
Poll from a tag it will check
that the tag is sending in the
correct slot and send any
adjustment back to the tag in
the response message.

Power On
Initialise and configure the DW IC,

initialise and configure Anchor
application (e.g. set the address,

calculate the response times)

 TX done
After Response sent go back to RX

TX frame

 RX event
1. if RX frame - check which frame and
act accordingly:
A. RX Poll – either send Response or wait
to RX other anchor s Response,
B. RX Response – either send Response if
this anchors turn or RX other anchor s
Response
C. RX Final – calculate the TOF

DecaRangeRTLS ARM Source Code Guide

© Decawave 2015 This document is confidential and contains information which is proprietary to
Decawave Limited. No reproduction is permitted without prior express written permission of the author

 Page 13 of 30

All the anchor will report ranges they calculate for the tags that range with them, but also any range reports

they receive from other anchors (all will receive TOFs inside the response messages). No frame filtering is

used so any messages on the air can be received.

2.4.6 Ranging Method

The ranging method uses a set of three messages to complete two-round trip measurements from which the

range is calculated. As messages are sent and received the DecaRangeRTLS ARM application retrieves the

message send and receive times from the DW1000. These transmit and receive timestamps are used to

work out a round trip delay and calculate the range. Figure 5 shows the arrangement and general operation

of the two-way ranging as implemented by the DecaRangeRTLS ARM application.

Figure 5: Two way ranging in DecaRangeRTLS ARM

Above this instance level is the application that provides the user interface described in section 2.5 below. In

addition to the tag_run() and anch_run() function, the instance code provides control functions to the

application. These functions are listed here to give the reader a quick idea of the functionality: -

instance_init(), instance_config(), instance_get_role(), instance_set_antennadelays(),
instance_set_replydelay(), rx_ok_cb_tag(), rx_ok_cb_anch(), tag_process_rx_timeout() etc.

The reader is directed to the code in file instance_*.c for more details of these functions.

2.5 Top level Application code

The top level application (dw_main.c) contains the main entry point for the DecaRanging ranging demo

application and also all the user interface code.

The ability of the application layer to display results depends on the capability of the hardware platform. On

the EVB1000 evaluation board the LCD is used to display the resultant range from a range measurement.

Table 1: LCD display messages in the DecaRange RTLS application

Set to operate as

Anchor
Set to operate as

Tag

Poll

Response (A0)

FinalCalculate

Range

listen

for poll

Response (A1)

Response (A2)

Response (A3)

DecaRangeRTLS ARM Source Code Guide

© Decawave 2015 This document is confidential and contains information which is proprietary to
Decawave Limited. No reproduction is permitted without prior express written permission of the author

 Page 14 of 30

Filename Brief description

1234567890123456 This row is just for sizing the fixed space font so that the text defined here
fits the 16x2 character display on the EVB1000

USB-to-SPI Unit is in USB to SPI conversion mode

DecaRangeRTLS L2
T3 xxxxxxxxxxxx

Unit is in RTLS, “L” (Long Range) mode on channel “2”, and operating as a
Tag #3, see below for definition of xxxxxxxxxxxx.

DecaRangeRTLS S5
A0 xxxxxxxxxxxx

Unit is in RTLS, “S” (Short Frame) mode on channel “5”, and operating as
Anchor #0, see below for definition of xxxxxxxxxxxx.

DecaRangeRTLS L2
LS xxxxxxxxxxxx

Unit is in RTLS, “L” (Long Range) mode on channel “2”, and operating as a
Listener, see below for definition of xxxxxxxxxxxx.

AiTj:rrr.rrm Where xxxxxxxxxxxx is the text (left) that shows information extracted
from the last ranging report received by the unit, where:
i - is the anchor address (least significant nibble),
j - is the tag address (least significant nibble),
rrr.rr - is the range between this tag and anchor in meters to two decimal
places, and, the characters “A”, “T”, “:” and “m” are just these characters.

Continuous TX L2
Spectrum Test

Indicates that continuous transmission test mode is active. In this case
operating with LR (Long Range) frame format on channel 2.

2.6 Format of ranging results as sent to USB/Virtual COM port

The application also outputs ranging and some debug information over the virtual COM port. Figure 6 shows

example output from anchor 0 as viewed on Teraterm terminal emulator (communication program).

The windows PC driver is available from the ST Microelectronics website, see TREK1000 User Manual for

details on its installation.

Figure 6: Example Teraterm window showing the debug info sent via COM port

There are three ranging report messages sent over the USB port:

DecaRangeRTLS ARM Source Code Guide

© Decawave 2015 This document is confidential and contains information which is proprietary to
Decawave Limited. No reproduction is permitted without prior express written permission of the author

 Page 15 of 30

MID MASK RANGE0 RANGE1 RANGE2 RANGE3 NRANGES RSEQ DEBUG aT:A

1. mr 0f 000005a4 000004c8 00000436 000003f9 0958 c0 40424042 a0:0

2. ma 07 00000000 0000085c 00000659 000006b7 095b 26 00024bed a0:0

3. mc 0f 00000663 000005a3 00000512 000004cb 095f c1 00024c24 a0:0

The “mr” message consists of tag to anchor raw ranges, “mc” tag to anchor range bias corrected ranges –

used for tag location and “ma” anchor to anchor range bias corrected ranges – used for anchor auto-

positioning.

MID this is the message ID, as described above: mr, mc and ma

MASK this states which RANGEs are valid, if MASK=7 then only RANGE0, RANGE1 and RANGE2 are

valid (in hex, 8-bit number)

RANGE0 this is tag to anchor ID 0 range if MID = mc/mr (in mm, 32-bit hex number)

RANGE1 this is tag to anchor ID 1 range if MID = mc/mr or anchor 0 to anchor 1 range if MID = ma (in

mm, 32-bit hex number)

RANGE2 this is tag to anchor ID 2 range if MID = mc/mr or anchor 0 to anchor 2 range if MID = ma (in

mm, 32-bit hex number)

RANGE3 this is tag to anchor ID 3 range if MID = mc/mr or anchor 1 to anchor 2 range if MID = ma (in

mm, 32-bit hex number)

NRANGES this is a number of ranges completed by reporting unit raw range (16-bit hex number)

RSEQ this is the range sequence number (8-bit hex number)

DEBUG this is the TX/RX antenna delays (if MID = ma) – two 16-bit numbers or time of last range

reported – if MID = mc/mr (32 bit hex number)

aT:A the T is the tag ID and A id the anchor ID

2.7 Complete list of source code files

Table 2 gives a list of the main files that make up the source code of the DecaRangeRTLS ARM application.

The file name is given along with a brief description of the file and its purpose. The reader is referred to the

other sections of this document for more details on the code structure and organisation.

Table 2: List of source files in the DecaRangeRTLS ARM application

Filename Brief description

deca_version.h Decawave’s version number for the DW1000 driver/API code

deca_device.c Device level Functions – source code

deca_device_api.h Device level Functions – header

deca_mutex.c Place holder for IRQ disable for mutual exclusion – source code

deca_param_types.h Header defining the parameter and configuration structures

deca_params_init.c Initialisation of configuration data for setting up the DW1000

deca_range_tables.c Contains the ranging correction tables

deca_regs.h Device level – header (Device Register Definitions)

deca_spi.c SPI interface driver – source code

deca_spi.h SPI interface driver – header

dma_spi.c SPI interface driver – source code for DMA implementation

deca_types.h Data type definitions – header

DecaRangeRTLS ARM Source Code Guide

© Decawave 2015 This document is confidential and contains information which is proprietary to
Decawave Limited. No reproduction is permitted without prior express written permission of the author

 Page 16 of 30

Filename Brief description

port.c ARM peripheral and GPIO configuration

port.h ARM peripheral and GPIO configuration definitions

dw_main.c Application – source code (main line)

main.c Application – source code (main line)

Instance_calib.c Calibration functions and data for the application – source code

Instance_common.c Common application functions – source code

Instance_tag.c Ranging Application Instance – source code

Instance_anch.c Ranging Application Instance – source code

instance.h Ranging Application Instance – header

compiler.h Contains the standard library files

stm32f10x_conf.h STM library configuration/inclusion files

stm32f10x_it.c Interrupt handlers are defined here.

stm32f10x_it.h Interrupt handlers are declared here.

deca_usb.c The USB application – input/output over Virtual COM port

DecaRangeRTLS ARM Source Code Guide

© Decawave 2015 This document is confidential and contains information which is proprietary to
Decawave Limited. No reproduction is permitted without prior express written permission of the author

 Page 17 of 30

3 RANGING ALGORITHM

This section describes the ranging algorithm used in the DecaRangeRTLS demo application. Tag will attempt

to range to four anchors and then go into DEEP SLEEP mode. (It will be woken up after superframe period to

start the cycle again.)

3.1 DecaRangeRTLS ARM application’s Tag/Anchor Two-way ranging algorithm

For this algorithm one end acts as a tag, periodically initiating a range measurement, while the other end acts

as an anchor listening and responding to the tag and calculating the range.

In the ranging scheme the tag sends a Poll message which is received by three (or four) anchors in the

infrastructure. The anchors reply in successive responses with packets RespA, RespB and RespC after which

the tag sends the Final message received by all the anchors. This allows the tag to be located after sending

only 2 messages and receiving 3. This scheme is illustrated below.

This represents a substantial saving in message traffic thereby saving battery power and air-time. In the

DecaRangeRTLS demo the anchor sends a ranging report of the calculated range to the tag so that it knows

the range too, this is done inside the next Response message. This means that a location engine can be used

on the tag’s side to work out tags position relative to anchors (Navigational mode or Geo-Fencing mode).

Figure 7: Range calculation in DecaRangeRTLS

3.2 Practical considerations for ranging in a real product

The application note APS016: “Moving from TREK to a (commercial TWR RTLS) product” should be read by

anyone who would like to develop a commercial TWR RTLS product. The document aims to give an

appreciation and overview of the steps involved in developing a commercial RTLS product starting from

Decawave’s TREK1000 Two-Way-Ranging (TWR) RTLS IC Evaluation Kit, which uses Decawave’s DW1000

ultra-wideband (UWB) transceiver IC.

DecaRangeRTLS ARM Source Code Guide

© Decawave 2015 This document is confidential and contains information which is proprietary to
Decawave Limited. No reproduction is permitted without prior express written permission of the author

 Page 18 of 30

3.3 Frame Time Adjustments

Successful ranging relies on the system being able to accurately determine the TX and RX times of the

messages as they leave one antenna and arrive at the other antenna. This is needed for antenna-to-antenna

time-of-flight measurements and the resulting antenna-to-antenna distance estimation.

The significant event making the TX and RX times is defined in IEEE 802.15.4 as the “Ranging Marker

(RMARKER): The first ultra-wide band (UWB) pulse of the first bit of the physical layer (PHY) header (PHR) of

a ranging frame (RFRAME)”. The time stamps should reflect the time instant at which the RMARKER leaves

or arrives at the antenna. However, it is the digital hardware that marks the generation or reception of the

RMARKER, so adjustments are needed to add the TX antenna delay to the TX timestamp, and, subtract the

RX antenna delay from the RX time stamp.

The EVB1000 units as part of the TREK1000 kit have the antenna delays calibrated, and programmed into the

DW1000 OTP (one-time-programmable) memory. However, if DecaRangeRTLS SW is downloaded on an

EVB1000 which has not been calibrated for TREK, the application will use the default antenna delay value as

set in the instance_calib.c file, there are two values, one for each channel option (2/5). The value specified is

divided equally between TX and RX antenna delays. The default value has been calculated by averaging the

calibration values from a number of EVB1000 boards.

DecaRangeRTLS ARM Source Code Guide

© Decawave 2015 This document is confidential and contains information which is proprietary to
Decawave Limited. No reproduction is permitted without prior express written permission of the author

 Page 19 of 30

4 MESSAGES USED IN TREK1000 TWR

As shown in Figure 5, three messages are employed in the two-way ranging: the Poll message, the Response

message, and the Final message. The detailed formats of the messages are documented below. These

follow IEEE message encoding conventions, but these are NOT standardised RTLS messages. The reader is

referred to the ISO/IEC 24730-62 international standard for details of standardised message formats for use

in RTLS systems based on IEEE 802.15.4 UWB.

4.1 General ranging frame format

The general message format is the IEEE 802.15.4 standard encoding for a data frame. Figure 8 shows this

format. The two byte Frame Control octets are constant for the TREK application because it always uses data

frames with 2-octet (16-bit) source and destination addresses, and a single 16-bit PAN ID (value 0xDECA). In

a real 802.15.4 network, the PAN ID might be negotiated as part of associating with a network or it might be

a defined constant based on the application.

Figure 8: General ranging frame format

The sequence number octet is incremented modulo-256 for every frame sent.

The source and destination addresses are 16-bit values based on the EVB1000 board’s configuration

switches settings selecting the mode as tag or anchor and the tag/anchor number.

The 2-octet FCS is a CRC frame check sequence. This is generated automatically by the DW1000 IC (under

software control) and appended to the transmitted message.

The content of the ranging message portion of the frame depends on which of the four ranging messages it

is. These are shown in Figure 9 and described in sections 4.2 to 4.5. In these only the Ranging Message

portion of the frame is shown and discussed. This data is encapsulated in the general ranging frame format

of Figure 8 to form the complete ranging message in each case.

Bit 0 Bit 1 Bit 2 Bit 3 Bit 4 Bit 5 Bit 6 Bit7

Frame Control (FC)

1 0 0

SEC PEND

0 1 0

Frame
Control (FC)

Sequence
Number

PAN ID

2 octet 1 octet 2 octets

Destination
Address

2 octets

Ranging
Message

Variable # octets

FCS

2 octets

Bit 8 Bit 9 10 11 12 13 14 15

0 0 0 0 SrcAddrMode

Source
Address

2 octets

0 1
16-bit

Data Frame

0 0 DestAddrMode

0 1
16-bit

ACK

0x41 0x88 0xCA 0xDE

0, 1 2 3, 4 5, 6 7, 8 9 and upFrame buffer indices:

DecaRangeRTLS ARM Source Code Guide

© Decawave 2015 This document is confidential and contains information which is proprietary to
Decawave Limited. No reproduction is permitted without prior express written permission of the author

 Page 20 of 30

Figure 9: Ranging message encodings

4.2 Poll message

The Poll message is sent by the tag to initiate a range measurement. Table 3 lists and describes the

individual fields within the Poll message.

Table 3: Fields within the ranging Poll message

Octet #’s Value Description

1 0x81 Function code: This octet 0x81 identifies this as a tag Poll message

2 - Range number: This is a range sequence number, on each wake up this number
is incremented.

4.3 Response message

The response message is sent by the anchor in Response to a poll from the tag. Table 4 lists and describes

the individual fields within the Response message.

Table 4: Fields within the ranging Response message

Octet #’s Value Description

1 0x70 Function code: This octet 0x70 identifies this as the Response message

2, 3 - Sleep correction: This two octet parameter is a correction factor that adjusts the
Tag’s sleep duration so that the Tag’s ranging activity can be assigned and
aligned into a slot that does not interfere with other tags in the system. Anchor
#0, the gateway anchor, will control/set this field. All other anchors set this field
to 0.

12 to 15 - 32-bit TOF from the previous exchange, corresponding to the range number as
given in the next octet

16 - Range number: This is a range sequence number, corresponding to the reported
TOF.

4.4 Final message

The Final message is sent by the tag after receiving the anchor’s Response message. The Final message is 44

octets in length. Table 5 lists and describes the individual fields within the Final message.

Final Message Function

code

1 octet

Poll TX time

5 octets

A0's Resp RX time

5 octets

9Frame buffer indices: 11 to 15 16 to 20

0x82 - -

Response Message

Function

code

1 octet

9Frame buffer indices:

0x81

Function

code

1 octet

9Frame buffer indices:

0x70

Poll Message Range

number

1 octet

10

-

Range

number

1 octet

16

-

Sleep

correction

2 octet

10 and 11

-

ToF (n-1)

4 octets

12 to 15

-

Range

number

1 octet

10

-

A1's Resp RX time

5 octets

A2's Resp RX time

5 octets

21 to 25 26 to 30

- -

A3's Resp RX time

5 octets

31 to 35

-

Final TX time

5 octets

36 to 40

-

Valid

Resp

1 octet

41

-

DecaRangeRTLS ARM Source Code Guide

© Decawave 2015 This document is confidential and contains information which is proprietary to
Decawave Limited. No reproduction is permitted without prior express written permission of the author

 Page 21 of 30

Table 5: Fields within the ranging Final message

Octet #’s Value Description

1 0x82 Function code: This octet identifies the message as the tag Final message

2 - Range number: This is a range sequence number, corresponding to the range
number as sent in the Poll.

3 to 7 - Poll TX time: This 5 octet field is the TX timestamp for the tag’s poll message,
i.e. the precise time the frame was transmitted.

8 to 12 - Resp RX time: This 5 octet field is the RX timestamp for the response from
anchor 0, i.e. the time the tag received the response frame from the anchor.

13 to 17 - Resp RX time: This 5 octet field is the RX timestamp for the response from
anchor 1, i.e. the time the tag received the response frame from the anchor.

18 to 22 - Resp RX time: This 5 octet field is the RX timestamp for the response from
anchor 2, i.e. the time the tag received the response frame from the anchor.

23 to 27 - Resp RX time: This 5 octet field is the RX timestamp for the response from
anchor 3, i.e. the time the tag received the response frame from the anchor.

28 to 32 - Final TX time: This 5 octet field is the TX timestamp of this final message, i.e.
the time the frame was transmitted, (this is pre-calculated by the tag).

33 - 8-bit value specifying which response times are valid. Anchors that receive the
final should only calculate the TOF if the response time is shown as being valid.

As well as sending the TOF to the tag, each anchor also reports the ranging result via its USB port.

4.5 Message timings

TREK demo supports following modes:

a) 110 kbps data rate with 1024 preamble length and 16 MHz PRF, using non-standard SFD of 64

symbols

b) 6.81 Mbps data rate with 128 preamble length and 16 MHz PRF and using standard SFD of 8

symbols.

The message lengths (in bytes) as shown in sections above are: Poll = 13, Response = 19, and Final = 44. If we

take the longest message, the total frame duration is 4.929 ms for the 110 kbps mode and 0.214 ms for the

6.81 Mbps mode.

Table 6: Slot timings

Data Rate N Slots Tre1 (µs) Tre2 (µs) Tre3 (µs) Tre4 (µs) Tfinr (µs) Ts min (ms)

110 kbps 8 2620 5720 8820 11920 16000 26

6.81 Mbps 8 320 658 995 1335 1800 2.25

DecaRangeRTLS ARM Source Code Guide

© Decawave 2015 This document is confidential and contains information which is proprietary to
Decawave Limited. No reproduction is permitted without prior express written permission of the author

 Page 22 of 30

Figure 10: TWR timing profile

In this TREK demo delayed response time are used, as shown in Figure 10. The response times vary
depending on the anchor ID. They are kept to a minimum, i.e. the anchors will try and reply after Poll
reception as soon as possible. The turnaround time is limited by the SPI frequency and microprocessor event
processing time. This means that the total time of ranging exchange takes about 26 ms in 110 kbps mode
and 2.25 ms in 6.81 Mbps mode.

Table 7: Frame timings

Message Bytes Data Rate
Preamble

(sym)
SFD

(sym)
Frame

duration (µs)

Poll 13 110 kbps 1024 64 2500

Response 16 110 kbps 1024 64 2894

Final 44 110 kbps 1024 64 4929

Poll 13 6.81 Mbps 128 8 176

Response 16 6.81 Mbps 128 8 182

Final 44 6.81 Mbps 128 8 214

4.6 Location rates

The TREK1000 supports 2 location rates as shown in Table 8. As auto-positioning is used the last two slots
are taken by anchor-to-anchor two-way-ranging, so a maximum possible number of tags supported is 8. The
slot times are derived from the times as shown Table 8 with some guard times added.

Table 8: Location rates

Mode Data Rate N Slots Ts (ms) Tsf (ms) Hz

2, 4 6.81 Mbps 10 10 100 10

1, 3 110 kbps 10 28 280 3.5

DecaRangeRTLS ARM Source Code Guide

© Decawave 2015 This document is confidential and contains information which is proprietary to
Decawave Limited. No reproduction is permitted without prior express written permission of the author

 Page 23 of 30

5 BUILDING AND RUNNING THE CODE

5.1 External Libraries

The DecaRanging ARM application consists of STM Libraries and Decawave application and driver sources. All

of these are provided in the zip of the source code. There are two zips of the code provided, one is for building

the code with CooCox IDE and the other for using the ST System Workbench IDE. The user has a choice of

which one they would like to use. In either case they just need to unzip the source and open the relevant

project file DecaRanging.coproj (if CooCox IDE has already been installed; see paragraph below if not) or

import “existing projects into workspace” if using ST System Workbench (AC6 – elipse) IDE. For installation of

ST System Workbench – please read ST Installation Guide [5]

5.2 Building the code with Coocox IDE

As an example development environment, this code can be built using CooCox IDE. This code building guide

assumes that the reader has ARM Toolchains installed and is familiar with building code using the CooCox

IDE. In the DecaRangeRTLS ARM software project we use the GNU Tools ARM for Embedded toolchain. GNU

Tools ARM for Embedded can be found at: https://launchpad.net/gcc-arm-embedded

CooCox IDE can be downloaded from: http://www.coocox.org/software.html. Please follow the “Read More”

link and download version 1.7.8. The released code was built using version 1.7.8.

5.3 Building configuration options

The example application has a couple of different build configuration options which can be exercised (see

instance.h and port.h for more details):

#define DEEP_SLEEP (0) //To disable deep-sleep in the tag set this to 0

#define CORRECT_RANGE_BIAS (1) // To remove compensation for small bias due to uneven
accumulator growth at close up high power set this to 0

#define ANCTOANCTWR (1) // To disable anchor to anchor ranging this should be set to 0

#define USB_SUPPORT // To disable USB Virtual COM port feature this line should be removed

#define LCD_UPDATE_ON (1) // To stop updating LCD during ranging this should be set to 0

https://launchpad.net/gcc-arm-embedded
http://www.coocox.org/software.html

DecaRangeRTLS ARM Source Code Guide

© Decawave 2015 This document is confidential and contains information which is proprietary to
Decawave Limited. No reproduction is permitted without prior express written permission of the author

 Page 24 of 30

6 OPERATIONAL FLOW OF EXECUTION

6.1 Introduction

This section is intended to be a guide to the flow of execution of the software as it runs, reading this and

following it at the same time by looking at the code should give the reader a good understanding of the basic

way the software operates as control flows through the layers to achieve transmission and reception. This

understanding should be an aid to integrating/porting the ranging function to other platforms.

To use this effectively, the reader is encouraged to browse the source code (e.g. in the ST Systemworkbench

or CooCox IDEs) at the same time as reading this description, and find each referred item in the source code

and follow the flow as described here.

6.2 The main application entry

The application is initialised and run from the src/application/dw_main(). Firstly we initialise the HW and

various ARM microcontroller peripherals, peripherals_init() and spi_peripheral_init() functions are used for

this also LCD is initialised (initLCD()). In the Cube Mx project this is done in main.c, and these are auto

generated by the Cube MX application. The instance roles (Tag or Anchor) and channel configurations

(channel, PRF, data rate etc.) are set up by a call to inittestapplication() function. Finally the tag_run() or

anch_run() is called periodically from while(1) loop which runs the instance state machines described below.

In parallel the DW1000 interrupt line is enabled so any events (e.g. transmitted frames or received frames)

are processed in the dwt_isr() call (in src/platform/port.c).

If there is a new range calculated or ranging report received (instance_newrange()), the application will

prepare output buffer to be sent over the Virtual COM port, and update the LCD display.

The usb_run() is also called from the while(1) loop, it processes any data sent to the application over

USB/Virtual COM port and outputs any data present in the tx_buff[] (send_usbmessage()).

6.3 Instance state machine

The instance state machine delivers the primary DecaRangeRTLS function of range measurement. The

instance state machine together with the RX and TX callback functions performs the interleaved two-way

ranging by forming the messages for transmission (TX), commanding their transmission, by commanding the

receive (RX) activities, by recording the TX and RX timestamps, by extracting the remote end’s TX and RX

timestamps from the received Final messages, and, by performing the time-of-flight calculation.

The instance code is invoked using the function tag_run() for a tag and anch_run() for an anchor, the

paragraphs below trace the flow of execution of this instance state machine from initialisation through the

TX and RX operations of a ranging exchange. This is done primarily by looking at the operation of the Tag

end. It starts by sending a Poll message, awaits a Responses (up to 4 Responses can be received) and then

sends the Final message to complete the ranging exchange. On the reception of the Final each anchor can

calculate the ToF which will be sent in the next Response message.

DecaRangeRTLS ARM Source Code Guide

© Decawave 2015 This document is confidential and contains information which is proprietary to
Decawave Limited. No reproduction is permitted without prior express written permission of the author

 Page 25 of 30

The anchor transitions are not discussed in detailed here, but after reading the description of tag execution

flow below the reader should be well equipped to similarly follow the anchor flow of execution.

The tag_run() function is the main function for the tag instance; it should be run periodically. It checks if

there are any outstanding events. Once the interrupt happens relevant callback function is called

rx_ok_cb_tag(), rx_to_cb_tag(), rx_err_cb_tag() or tx_conf_cb_tag() and acted upon. Some events will

schedule a response or re-enable the receiver, but also read the relevant TX/RX data from the DW1000 and

queued it up in the event queue so that the application can process it in the background. The application

internal timers are also checked in the tag_run() function (e.g. Sleep timer). Below paragraphs describe the

tag_app_run () sate machine in detail:

6.3.1 Initial state: TA_INIT

Function tag_app_run () contains the state machine that implements the tag side of the two-way ranging

function, the part of the code executed depends on the state and is selected by the “switch (inst-

>testAppState)” statement at the start of the function. The initial state “case TA_INIT”1 performs

initialisation and determines the next state to run. In the case of a tag we want to go to Sleep state after

initialisation, and then wake up and start the ranging exchange, thus the state “inst->nextState” is

changed to “TA_TXPOLL_WAIT_SEND” and “inst->instToSleep” is set to TRUE.

6.3.2 State: TA_SLEEP_DONE

In this state the microprocessor will wake up the DW1000 from DEEP SLEEP once the sleep timeout expires.

After waking up any of the DW1000 registers that are not preserved will be re-programmed and the state

will change to inst->testAppState = inst->nextState; which will be “TA_TXPOLL_WAIT_SEND”.

Note: In order to minimise power, the microprocessor uses DW1000 RSTn pin to notify when the DW1000

enters the INIT mode after wake up and is ready for operation. This minimises the time microprocessor

would otherwise wait before polling to check that DW1000 has entered INIT state. Before reading or writing

over SPI the micro needs to make sure the DW1000 is in IDLE, the time to IDLE will take 35 µs. The wake up

function is port_wakeup_dw1000_fast().

6.3.3 State: TA_TXPOLL_WAIT_SEND

In the state “case TA_TXPOLL_WAIT_SEND”, we want to send the Poll message, so firstly we set up the

destination address and all the other parameters/bytes of the Poll message. The Poll message is a broadcast

message as the destination address is set to 0xffff.

The tag_app_run () state machine state is set to “TA_TX_WAIT_CONF”, and as that state has more than one

use, “inst->previousState = TA_TXPOLL_WAIT_SEND” is set to as a control variable.

Note: In the case if a tag sending the Poll message, this message is sent immediately (by a call to

dwt_starttx) and tag’s Final message is sent with a delayed send command (state “case

TA_TXFINAL_WAIT_SEND” as described in section 6.3.8 below), it is required to send the message at an exact

1 The “TA_” prefix is because these are states in the “Test Application”.

DecaRangeRTLS ARM Source Code Guide

© Decawave 2015 This document is confidential and contains information which is proprietary to
Decawave Limited. No reproduction is permitted without prior express written permission of the author

 Page 26 of 30

and specific time with respect to the arrival of the message soliciting the response. To do this we use

delayed send. This is selected by the “delayedTx” second parameter to function

instance_send_delayed_frame ().

We also configure and enable the RX frame wait timeout, so that if the response is not coming, the tag

times-out and restarts the ranging. Also, a receiver is turned on automatically (DWT_RESPONSE_EXPECTED)

with a delay, this is because the Response is expected after a certain time after the Poll transmission is

complete so turning on the receiver too early would only waste power.

6.3.4 State: TA_TXE_WAIT

This is the state for the tag which is called before the next ranging exchange starts (i.e. before the sending of

next Poll message). Here we check if tag needs to enter DEEP_SLEEP mode before the next Poll is sent, and

call dwt_entersleep() if sleep is required.

Note: To save power the tag in TWR RTLS system, a tag will poll and range with a number of anchors and

then enter a sleep mode before starting the process again.

6.3.5 State: TA_TX_WAIT_CONF

In the state “case TA_TX_WAIT_CONF”, we await the confirmation that the message transmission has

completed. When the IC completes the transmission a “TX done” status bit is picked up by the device driver

interrupt routine which generates an event which is then processed by the TX callback function

(tx_conf_cb_tag()). The instance, after a confirmation of a successful transmission, will read and save the TX

time and calculate “delayedReplyTime” which is when we should send the Final message to complete the

ranging exchange. and then proceed to the next state (TA_RX_WAIT_DATA). The next state is thus set “inst-

>testAppState = TA_RX_WAIT_DATA”. See 6.3.7 for details of what this does.

6.3.6 State: TA_RXE_WAIT

This is the pre-receiver enable state. Here the receiver is enabled and the instance will then proceed to the

TA_RX_WAIT_DATA where it will wait to process any received messages or will timeout. Sometimes this state

is skipped if the receiver is turned on automatically (as we had DWT_RESPONSE_EXPECTED set as part of TX

command). We use automatic delayed turning on of the receiver as we know the exact times the responses

are sent, as they are using delayed transmissions. This it is possible (and desirable for power efficiency) to

delay turning on the receiver until just before the response is expected. (Delayed RX is not part of the IEEE

standard primitive but is an extension to support this DW1000 feature). The next state is: “inst-

>testAppState = TA_RXE_WAIT_DATA”.

Note: If a delayed transmission fails the transceiver will be disabled and the receiver will then be enabled

normally in this state.

6.3.7 State: TA_RX_WAIT_DATA

The state “case TA_RX_WAIT_DATA” (in instance_tag.c) handles all the RX messages expected for the tag
application, and the corresponding states for an anchor are found in instance_anch.c. We “switch
(message)”, and handle message arrival as signalled by a received event. If a good frame has been received

DecaRangeRTLS ARM Source Code Guide

© Decawave 2015 This document is confidential and contains information which is proprietary to
Decawave Limited. No reproduction is permitted without prior express written permission of the author

 Page 27 of 30

(SIG_RX_OKAY), we firstly check which addressing mode is used (short or long or both) and then we look at
the first byte of MAC payload data (beyond the IEEE MAC frame header bytes) and “switch(rxmsg-
>messageData[FCODE])”. FCODE is a Decawave defined identifier for the different DecaRanging messages;
see Figure 9, for details. For the point of view of the discussions here the tag is awaiting the anchor’s
response message so we would expect the FCODE to match “RTLS_DEMO_MSG_ANCH_RESP”. We note the RX
timestamp of the message “anchorRespRxTime”. If it is time to send the Final (e.g. if this was the 4th
response message) then our next states is set to: inst->testAppState = TA_TXFINAL_WAIT_SEND ; //
then send the final response

The state “case TA_RX_WAIT_DATA” also includes code to handles the “SIG_RX_TIMEOUT” message, for the

case where the expected message does not arrive and the DW1000 triggers a frame wait timeout event. The

DW1000 has an RX timeout function to allow the host wait for IC to signal either data message interrupt or

no-data timeout interrupt2. When the timeout happens, the tag will go back to restart the ranging exchange

or send a Final if there were any Responses received.

6.3.8 State: TA_TXFINAL_WAIT_SEND

In the state “case TA_TXFINAL_WAIT_SEND”, we want to send the Final message.

The Final message includes embedded the TX time-stamp of the tag’s poll message “inst->tagPollTxTime”

along with the four RX time-stamps of the anchors response messages, and embedded predicted (calculated)

TX time-stamp for the final message which includes adding the antenna delay “inst->txantennaDelay”. A

mask which shows which response times are valid is also inserted into the Final message.

The final message is sent at a specific time with respect to the transmission of the Poll, this is done using

delayed send, selected by the “delayedTx” second parameter to function instance_send_delayed_frame ().

We finish the processing by setting control variable “inst->previousState = TA_TXFINAL_WAIT_SEND” to

indicate where we are coming from and we set the “inst->testAppState = TA_TX_WAIT_CONF” selecting

this as the new state for the next call of the tag_app_run () state machine.

6.3.9 State: TA_TX_WAIT_CONF (for Final message TX)

In the state “case TA_TX_WAIT_CONF”, (as detailed in section 6.3.5) we await the confirmation that the

message transmission has completed. Here we will set “inst->testAppState = TA_TXE_WAIT”, and then go

to Sleep.

6.3.10 CONCLUSION

The above should be enough of a walkthrough of the state machine that the reader should be able to

decipher the anchor activity (and any remaining activity of tag).

In summary the anchor waits indefinitely in the state “case TA_RX_WAIT_DATA” until it receives a Poll

message. Once it receives the poll it starts the ranging exchange and finishes with a calculation of TOF

2 This idea here (although no code is yet written for this) is to facilitate the host processor entering a low power state until awakened

by either the RX data arriving or the no data timeout.

DecaRangeRTLS ARM Source Code Guide

© Decawave 2015 This document is confidential and contains information which is proprietary to
Decawave Limited. No reproduction is permitted without prior express written permission of the author

 Page 28 of 30

(range) report, which it reports to the LCD/USB and also, sends back to the tag in the next Response

message.

The Anchor ID 0, (section 2.4.2 Operating mode – Anchor) will also calculate the correct sleep delay

correction to send back to the tag so that the next ranging exchange starts in the correct superframe slot.

DecaRangeRTLS ARM Source Code Guide

© Decawave 2015 This document is confidential and contains information which is proprietary to
Decawave Limited. No reproduction is permitted without prior express written permission of the author

 Page 29 of 30

7 REFERENCES

Ref Author Title

[1] Decawave DW1000 Data Sheet

[2] Decawave DW1000 User Manual

[3] Decawave TREK1000 User Manual

[4] IEEE

IEEE 802.15.4‐2011 or “IEEE Std 802.15.4™‐2011” (Revision of
IEEE Std 802.15.4-2006).

IEEE Standard for Local and metropolitan area networks— Part 15.4: Low-Rate
Wireless Personal Area Networks (LR-WPANs). IEEE Computer Society
Sponsored by the LAN/MAN Standards Committee.

Available from http://standards.ieee.org/

[5] Decawave/ST 01_Installation of the tools and drivers.pdf

8 DOCUMENT HISTORY

Table 9: Document History

Revision Date Description

1.1 31st March 2015 Initial release for production device.

2.0 30th September, 2015 Scheduled update

2.1 30th October, 2015 Update to include changes to slot / superframe timings

2.2 15th November, 2017 Updated to reflect the changes in the source code due to refactoring and any

other updates as a result of porting to Cube Mx/ST System workbench project and

IDE.

9 MAJOR CHANGES

Release 2.0

Page Change Description

All Update of version number to 2.0

All Various typographical changes

Sections 2, 3, 4 and 6 Updated the doc to the new TWR scheme (asymmetric, interleaved)

Release 2.1

Page Change Description

All Update of version number to 2.1

All Various typographical changes

http://standards.ieee.org/

DecaRangeRTLS ARM Source Code Guide

© Decawave 2015 This document is confidential and contains information which is proprietary to
Decawave Limited. No reproduction is permitted without prior express written permission of the author

 Page 30 of 30

Sections 2.4.1
Updated the slot/superframe timings for 6.81 Mbps rate (10 slots of 10 ms are now used), the location rate of 10 Hz

remains the same.

Release 2.2

Page Change Description

All Update of version number to 2.2

All Various typographical changes

Sections: 2, 5 and 6 Updated to reflect the changes in the source code due to refactoring and any other updates as a result of porting to

Cube Mx/ST System workbench project and IDE.

Release 2.3

Page Change Description

All Update with new Logo

10 FURTHER INFORMATION

Decawave develops semiconductors solutions, software, modules, reference designs - that enable real-time,

ultra-accurate, ultra-reliable local area micro-location services. Decawave’s technology enables an entirely

new class of easy to implement, highly secure, intelligent location functionality and services for IoT and

smart consumer products and applications.

For further information on this or any other Decawave product, please refer to our website

www.decawave.com.

http://www.decawave.com/

	1 Overview
	2 Description of DecaRangeRTLS ARM code structure
	2.1 Target Specific Code
	2.2 Abstract SPI Driver – SPI Level code
	2.3 Device Driver – DW1000 Device Level Code
	2.4 Instance Code
	2.4.1 Operating mode – Tag
	2.4.2 Operating mode – Anchor #0
	2.4.3 Operating mode – Anchors #1 and #2
	2.4.4 Operating mode – Anchor #3
	2.4.5 Range Result
	2.4.6 Ranging Method

	2.5 Top level Application code
	2.6 Format of ranging results as sent to USB/Virtual COM port
	2.7 Complete list of source code files

	3 Ranging Algorithm
	3.1 DecaRangeRTLS ARM application’s Tag/Anchor Two-way ranging algorithm
	3.2 Practical considerations for ranging in a real product
	3.3 Frame Time Adjustments

	4 Messages used in TREK1000 TWR
	4.1 General ranging frame format
	4.2 Poll message
	4.3 Response message
	4.4 Final message
	4.5 Message timings
	4.6 Location rates

	5 Building and Running the Code
	5.1 External Libraries
	5.2 Building the code with Coocox IDE
	5.3 Building configuration options

	6 Operational flow of execution
	6.1 Introduction
	6.2 The main application entry
	6.3 Instance state machine
	6.3.1 Initial state: TA_INIT
	6.3.2 State: TA_SLEEP_DONE
	6.3.3 State: TA_TXPOLL_WAIT_SEND
	6.3.4 State: TA_TXE_WAIT
	6.3.5 State: TA_TX_WAIT_CONF
	6.3.6 State: TA_RXE_WAIT
	6.3.7 State: TA_RX_WAIT_DATA
	6.3.8 State: TA_TXFINAL_WAIT_SEND
	6.3.9 State: TA_TX_WAIT_CONF (for Final message TX)
	6.3.10 CONCLUSION

	7 References
	8 Document History
	9 Major Changes
	10 FURTHER INFORMATION

