

© Decawave 2015 This document is confidential and contains information which is proprietary to

Decawave Limited. No reproduction is permitted without prior express written permission of the author

SOURCE CODE GUIDE

DECARANGING (ARM) SOURCE CODE

Understanding and using the DW1000

DecaRanging source code

This document is subject to change without notice.

DecaRanging Source Code Guide

© Decawave 2015 This document is confidential and contains information which is proprietary to

Decawave Limited. No reproduction is permitted without prior express written permission of the author Page 2 of 32

DOCUMENT INFORMATION

Disclaimer

Decawave reserves the right to change product specifications without notice. As far as possible changes to

functionality and specifications will be issued in product specific errata sheets or in new versions of this document.

Customers are advised to check the Decawave website for the most recent updates on this product

Copyright © 2015 Decawave Ltd

LIFE SUPPORT POLICY

Decawave products are not authorized for use in safety-critical applications (such as life support) where a failure of

the Decawave product would reasonably be expected to cause severe personal injury or death. Decawave

customers using or selling Decawave products in such a manner do so entirely at their own risk and agree to fully

indemnify Decawave and its representatives against any damages arising out of the use of Decawave products in

such safety-critical applications.

Caution! ESD sensitive device.

Precaution should be used when handling the device in order to prevent permanent damage

DecaRanging Source Code Guide

© Decawave 2015 This document is confidential and contains information which is proprietary to

Decawave Limited. No reproduction is permitted without prior express written permission of the author Page 3 of 32

DISCLAIMER

This Disclaimer applies to the DecaRanging ARM source code and the DecaRanging PC source code
(collectively “Decawave Software”) provided by Decawave Ltd. (“Decawave”).

Downloading, accepting delivery of or using the Decawave Software indicates your agreement to the terms of
this Disclaimer. If you do not agree with the terms of this Disclaimer do not download, accept delivery of or
use the Decawave Software.

Decawave Software incorporates STSW-STM32046 (STM32F105/7, STM32F2 and STM32F4 USB on-the-go
Host and Device library (UM1021)) software (“STM Software”) provided to Decawave by ST Microelectronics
(“STM”) under STM’s Liberty V2 software license agreement dated November 16th 2011 available here (“STM
Software License Agreement”). Downloading, accepting delivery of or using STM Software as incorporated in
Decawave Software indicates your agreement to the terms of the STM Software License Agreement and in
particular the requirement that the STM Software be used only with STM microcontrollers and not with
microcontrollers from any other manufacturer. If you do not wish to accept the terms of the STM Software
License Agreement then you may still use the Decawave Software on the condition that you do not use the
STM Software incorporated therein.

Decawave Software is solely intended to assist you in developing systems that incorporate Decawave
semiconductor products. You understand and agree that you remain responsible for using your independent
analysis, evaluation and judgment in designing your systems and products. THE DECISION TO USE
DECAWAVE SOFTWARE IN WHOLE OR IN PART IN YOUR SYSTEMS AND PRODUCTS RESTS
ENTIRELY WITH YOU.

DECAWAVE SOFTWARE IS PROVIDED "AS IS". DECAWAVE MAKES NO WARRANTIES OR
REPRESENTATIONS WITH REGARD TO THE DECAWAVE SOFTWARE OR USE OF THE DECAWAVE
SOFTWARE, EXPRESS, IMPLIED OR STATUTORY, INCLUDING ACCURACY OR COMPLETENESS.
DECAWAVE DISCLAIMS ANY WARRANTY OF TITLE AND ANY IMPLIED WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT OF ANY
THIRD PARTY INTELLECTUAL PROPERTY RIGHTS WITH REGARD TO DECAWAVE SOFTWARE OR
THE USE THEREOF.

DECAWAVE SHALL NOT BE LIABLE FOR AND SHALL NOT DEFEND OR INDEMNIFY YOU AGAINST
ANY THIRD PARTY INFRINGEMENT CLAIM THAT RELATES TO OR IS BASED ON THE DECAWAVE
SOFTWARE OR THE USE OF THE DECAWAVE SOFTWARE WITH DECAWAVE SEMICONDUCTOR
TECHNOLOGY. IN NO EVENT SHALL DECAWAVE BE LIABLE FOR ANY ACTUAL, SPECIAL,
INCIDENTAL, CONSEQUENTIAL OR INDIRECT DAMAGES, HOWEVER CAUSED, INCLUDING WITHOUT
LIMITATION TO THE GENERALITY OF THE FOREGOING, LOSS OF ANTICIPATED PROFITS,
GOODWILL, REPUTATION, BUSINESS RECEIPTS OR CONTRACTS, COSTS OF PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
INTERRUPTION), LOSSES OR EXPENSES RESULTING FROM THIRD PARTY CLAIMS. THESE
LIMITATIONS WILL APPLY REGARDLESS OF THE FORM OF ACTION, WHETHER UNDER STATUTE, IN
CONTRACT OR TORT INCLUDING NEGLIGENCE OR ANY OTHER FORM OF ACTION AND WHETHER
OR NOT DECAWAVE HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES, ARISING IN ANY
WAY OUT OF DECAWAVE SOFTWARE OR THE USE OF DECAWAVE SOFTWARE.

You are authorized to use Decawave Software in your end products and to modify the Decawave Software in
the development of your end products. HOWEVER, NO OTHER LICENSE, EXPRESS OR IMPLIED, BY
ESTOPPEL OR OTHERWISE TO ANY OTHER DECAWAVE INTELLECTUAL PROPERTY RIGHT, AND NO
LICENSE TO ANY THIRD PARTY TECHNOLOGY OR INTELLECTUAL PROPERTY RIGHT, IS GRANTED
HEREIN, including but not limited to any patent right, copyright, mask work right, or other intellectual property
right relating to any combination, machine, or process in which Decawave semiconductor products or
Decawave Software are used.

You acknowledge and agree that you are solely responsible for compliance with all legal, regulatory and
safety-related requirements concerning your products, and any use of Decawave Software in your
applications, notwithstanding any applications-related information or support that may be provided by
Decawave.

http://www.st.com/st-web-ui/static/active/en/resource/legal/legal_agreement/license_agreement/software_license_agreement_liberty_v2.pdf?sc=software_license_agreement_liberty_v2

DecaRanging Source Code Guide

© Decawave 2015 This document is confidential and contains information which is proprietary to

Decawave Limited. No reproduction is permitted without prior express written permission of the author Page 4 of 32

Decawave reserves the right to make corrections, enhancements, improvements and other changes to its
software at any time.

Mailing address: -

Decawave Ltd.,
Adelaide Chambers,
Peter Street,
Dublin 8

Copyright (c) 22/04/2015 by Decawave Limited. All rights reserved.

DecaRanging Source Code Guide

© Decawave 2015 This document is confidential and contains information which is proprietary to

Decawave Limited. No reproduction is permitted without prior express written permission of the author Page 5 of 32

TABLE OF CONTENTS

1 INTRODUCTION .. 7

2 BUILDING AND RUNNING THE CODE .. 8

2.1 EXTERNAL LIBRARIES ... 8

2.2 BUILDING THE CODE .. 8

3 PROGRAMMING EVB1000 .. 9

3.1 PURCHASE THE ST-LINK/V2 JTAG PROGRAMMER ... 9

3.2 INSTALL ST-LINK DRIVER UTILITY .. 9

3.3 CONNECT ST-LINK TO THE EVB1000 EVALUATION BOARD AND LOADING THE BUILT IMAGE .. 9

4 OVERVIEW .. 12

5 DETAILED DESCRIPTION OF DECARANGING CODE STRUCTURE .. 13

5.1 TARGET SPECIFIC CODE ... 13

5.2 ABSTRACT SPI DRIVER – SPI LEVEL CODE.. 14

5.3 DEVICE DRIVER – DW1000 DEVICE LEVEL CODE ... 14

5.4 INSTANCE CODE ... 14

5.5 TOP LEVEL APPLICATION CODE .. 16

5.6 FOLDER STRUCTURE .. 17

6 RANGING ALGORITHM .. 18

6.1 DECARANGING’S TAG/ANCHOR TWO-WAY RANGING ALGORITHM .. 18

6.2 MESSAGES USED IN DECARANGING’S TAG/ANCHOR TWO-WAY RANGING .. 19

6.2.1 General ranging frame format .. 19

6.2.2 Blink frame format .. 20

6.2.3 Poll message ... 21

6.2.4 Response message .. 21

6.2.5 Final message .. 22

6.2.6 Ranging Initiation message ... 22

6.3 FRAME TIME ADJUSTMENTS ... 23

6.3.1 Frame Transmit-Time Adjustment .. 23

6.3.2 Frame Receive-Time Adjustment .. 23

7 CODE / SYSTEM ISSUES ... 24

7.1 ANTENNA DELAY .. 24

8 OPERATIONAL FLOW OF EXECUTION ... 25

8.1 THE MAIN APPLICATION ENTRY .. 25

8.2 INSTANCE STATE MACHINE ... 25

8.2.1 Initial state: TA_INIT ... 25

8.2.2 State: TA_TXBLINK_WAIT_SEND ... 26

8.2.3 State: TA_TXPOLL_WAIT_SEND .. 26

8.2.4 State: TA_TXE_WAIT ... 27

8.2.5 State: TA_TX_WAIT_CONF .. 27

8.2.6 State: TA_RXE_WAIT ... 27

8.2.7 State: TA_RX_WAIT_DATA .. 27

8.2.8 State: TA_SLEEP_DONE ... 28

8.2.9 State: TA_TXE_WAIT ... 28

DecaRanging Source Code Guide

© Decawave 2015 This document is confidential and contains information which is proprietary to

Decawave Limited. No reproduction is permitted without prior express written permission of the author Page 6 of 32

8.2.10 State: TA_TXFINAL_WAIT_SEND ... 28

8.2.11 State: TA_TX_WAIT_CONF (for Final message TX) ... 29

8.2.12 CONCLUSION .. 29

9 BIBLIOGRAPHY .. 30

10 DOCUMENT HISTORY .. 30

11 MAJOR CHANGES .. 30

11.1 RELEASE 1.7 ... 30

11.2 RELEASE 1.8 ... 31

11.3 RELEASE 1.9 ... 31

11.4 RELEASE 2.0 ... 31

11.5 RELEASE 2.1 ... 31

12 FURTHER INFORMATION ... 32

DecaRanging Source Code Guide

© Decawave 2015 This document is confidential and contains information which is proprietary to

Decawave Limited. No reproduction is permitted without prior express written permission of the author Page 7 of 32

1 INTRODUCTION

This document, “DecaRanging (ARM) Source Code Guide” is a guide to the application source code of

Decawave’s “DecaRanging” two-way ranging demonstration running on the ARM microcontroller on the

EVB1000 development platform.

This document should be read in conjunction with the “EVK1000 User Guide” which gives an overview of

DW1000 evaluation kit (EVK1000) and describes how to operate the DecaRanging Application.

This document discusses the source code of the DecaRanging application, covering the structure of the

software and the operation of the ranging demo application particularly the way the range is calculated.

Section 8 - Operational flow of executionis written in the style of a walkthrough of execution flow of the
software. It should give a good understanding of the basic operational steps of transmission and reception,
which in turn should help integrating/porting the ranging function to customers platforms.

This document relates to the following versions:

"DecaRanging MP 3.11" application version and

"DW1000 Device Driver Version 04.00.04" driver version

The device driver version information may be found in source code file “deca_version.h”, and the application

version is specified in “dw_main.c”.

DecaRanging Source Code Guide

© Decawave 2015 This document is confidential and contains information which is proprietary to

Decawave Limited. No reproduction is permitted without prior express written permission of the author Page 8 of 32

2 BUILDING AND RUNNING THE CODE

2.1 External Libraries

The DecaRanging ARM application consists of STM Libraries and Decawave application and driver sources. All

of these are provided in the zip of the source code. There are two zips of the code provided, one is for building

the code with CooCox IDE and the other for using the ST System Workbench IDE. The user has a choice of

which one they would like to use. In either case they just need to unzip the source and open the relevant

project file DecaRanging.coproj (if CooCox IDE has already been installed; see paragraph below if not) or

import “existing projects into workspace” if using ST System Workbench (AC6 – elipse) IDE. For installation of

ST System Workbench – please read ST Installation Guide [1]

2.2 Building the code

As an example development environment, this code can be built using CooCox IDE. This code building guide

assumes that the reader has ARM Toolchains installed and is familiar with building code using the CooCox

IDE. In the DecaRanging ARM software project we use the GNU Tools ARM for Embedded.

In Figure 1 the user should enter the path to ARM tools for embedded toolchain – e.g.

“C:\GNUToolsARMEmbedded\4.8_2014q1\bin”. GNU Tools ARM for Embedded can be found:

https://launchpad.net/gcc-arm-embedded

CooCox IDE can be downloaded from: https://www.coocox.org/software.html. Please follow the “Read More”

link and download version 1.7.8. The released code was built using version 1.7.8. A user can also select a

different toolchain as shown in Figure 10.

Figure 1: Select toolchain path

https://launchpad.net/gcc-arm-embedded
https://www.coocox.org/software.html

DecaRanging Source Code Guide

© Decawave 2015 This document is confidential and contains information which is proprietary to

Decawave Limited. No reproduction is permitted without prior express written permission of the author Page 9 of 32

3 PROGRAMMING EVB1000

This chapter details how to download the DecaRanging ARM binary into the STM32 on the EVB1000 HW.

3.1 Purchase the ST-Link/V2 JTAG Programmer

Decawave uses the ST-LINK/V2 JTAG Programmer to connect to the EVB1000 board and program the code.

This inexpensive JTAG tool is from STMicroelectronics or their distributers see (http://www.st.com/).

Figure 2: ST-Link/V2 JTAG Programmer

3.2 Install ST-LINK driver utility

Go to page http://www.st.com/web/en/catalog/tools/PF258168

This allows you to download ST Microelectronics part # STSW-LINK004 which is identified as the STM32 ST-

LINK utility

Click on the download link to download file “stsw-link004.zip” which contains the “STM32 ST-LINK

Utility_v2.4.0.exe” installer

Extract the Installer exe from inside the downloaded zip file and run it. This will install the ST-Link utility and

driver software. We used default installation directories and options. Click “Next” button repeatedly and

“finish” button at the end.

3.3 Connect ST-LINK to the EVB1000 Evaluation Board and loading the built image

The EVB1000 has a standard 20-PIN JTAG connector. The connections are shown in the figures below.

http://www.st.com/internet/evalboard/product/219866.jsp
http://www.st.com/
http://www.st.com/web/en/catalog/tools/PF258168

DecaRanging Source Code Guide

© Decawave 2015 This document is confidential and contains information which is proprietary to

Decawave Limited. No reproduction is permitted without prior express written permission of the author Page 10 of 32

Figure 3: ST-LINK Connections

Connect ST-LINK as shown above and power up the EVB1000.

Run the ST-link “STM32 ST-LINK Utility” and in “Target” menu select “Settings” sub-option, and select SWD

connection mode.

Figure 4: ST-LINK Utility Menus

 Use “Target” menu “Connect” sub-option to connect to the target device. The progress/status pane at the

bottom will inform you of progress:

: Connected via SWD.

DecaRanging Source Code Guide

© Decawave 2015 This document is confidential and contains information which is proprietary to

Decawave Limited. No reproduction is permitted without prior express written permission of the author Page 11 of 32

: Device ID: 0x418

: Device flash Size: 256 Kbytes

: Device family: STM32F10xxx Connectivity Line

 Use “File” menu “Open File...” sub-option to browse to and find the binary file called

“DecaRanging_ARM.bin”.

 Next select “Target” menu sub-option “Program & Verify” and click start when dialog below opens.

Figure 5: ST-LINK Progress

 The programming and verification will be done and the progress/status pane at the bottom will inform

you of progress:

 : [DecaRanging_ARM.bin] opened successfully.

 : Flash memory programmed in 10s and 766ms.

 : Verification...OK

 Once programming is complete you can disconnect the ST-Link and re-power the unit to begin execution

of the newly loaded program.

 Tool bar icons can also be used to connect and disconnect the JTAG controller.

DecaRanging Source Code Guide

© Decawave 2015 This document is confidential and contains information which is proprietary to

Decawave Limited. No reproduction is permitted without prior express written permission of the author Page 12 of 32

4 OVERVIEW

Figure 6 below shows the layered structure of the DecaRanging application, giving the names of the main files

associated with each layer and a brief description of the functionality provided at that layer.

Figure 6: Software layers in DecaRanging

The layers, functions and files involved are described in the following section.

DecaRanging Source Code Guide

© Decawave 2015 This document is confidential and contains information which is proprietary to

Decawave Limited. No reproduction is permitted without prior express written permission of the author Page 13 of 32

5 DETAILED DESCRIPTION OF DECARANGING CODE STRUCTURE

With reference to Figure 6X, the identified layers are described in more detail below.

5.1 Target Specific Code

The low-level ARM specific code can be found in \src\platform\ – the two files port.c and port.h define target

peripherals and GPIOs which are enabled and in use i.e. SPI1 for SPI communications with DW1000, SPI2 for

SPI communications with LCD, other GPIO lines for application configuration and control.

SPI1:

#define SPIx SPI1

#define SPIx_GPIO GPIOA

#define SPIx_CS GPIO_Pin_4

#define SPIx_CS_GPIO GPIOA

#define SPIx_SCK GPIO_Pin_5

#define SPIx_MISO GPIO_Pin_6

#define SPIx_MOSI GPIO_Pin_7

The SPI1 peripheral is used to communicate to the DW1000 SPI bus.

Interrupt line:

#define DECAIRQ GPIO_Pin_8

#define DECAIRQ_GPIO GPIOA

#define DECAIRQ_EXTI EXTI_Line8

#define DECAIRQ_EXTI_PORT GPIO_PortSourceGPIOA

#define DECAIRQ_EXTI_PIN GPIO_PinSource8

#define DECAIRQ_EXTI_IRQn EXTI9_5_IRQn

#define DECAIRQ_EXTI_USEIRQ ENABLE

The DW1000 interrupt line is connected to GPIOA pin 8. Note: For MP the line is active high.

LCD driver:

#define SPIy SPI2

#define SPIy_GPIO GPIOB

#define SPIy_CS GPIO_Pin_12

#define SPIy_CS_GPIO GPIOB

#define SPIy_SCK GPIO_Pin_13

#define SPIy_MISO GPIO_Pin_14

#define SPIy_MOSI GPIO_Pin_15

The SPI2 peripheral is used to communicate with the LCD.

Application configuration switches (S1):

#define TA_SW1_3 GPIO_Pin_0

#define TA_SW1_4 GPIO_Pin_1

#define TA_SW1_5 GPIO_Pin_2

#define TA_SW1_6 GPIO_Pin_3

#define TA_SW1_7 GPIO_Pin_4

#define TA_SW1_8 GPIO_Pin_5

#define TA_SW1_GPIO GPIOC

Configuration switch (S1) is used to choose between the Anchor and Tag modes and various channel

configurations. See “EVK1000 User Guide” for more details.

DecaRanging Source Code Guide

© Decawave 2015 This document is confidential and contains information which is proprietary to

Decawave Limited. No reproduction is permitted without prior express written permission of the author Page 14 of 32

The src\compiler\compiler.h contains the standard library files which can be replaced if desired, (e.g. if one

wishes to use functions optimised for smaller code size, say).

5.2 Abstract SPI Driver – SPI Level code

The file deca_spi.c provides abstract SPI driver functions openspi(), closespi(), writetospi() and readfromspi().

These are mapped onto the ARM microcontroller SPI interface driver.

5.3 Device Driver – DW1000 Device Level Code

The file deca_device_api.h provides the interface to a library of API functions to control and configure the

DW1000 registers and implement functions for device level control. The API functions are described in the

“DW1000 Device Driver Application Programming Interface (API) Guide” document.

5.4 Instance Code

The instance code (in instance.c) provides a simple ranging demonstration application. This instance code

sits where the MAC would normally reside. For expediency in developing the ranging demonstration to

showcase ranging and performance of the DW1000, the ranging demo application was implemented directly

on top of the DW1000 driver API.

The ranging demo application is implemented by the state machine in function testapprun(), called from

function instance_run(), which is the main entry point for running the instance code. The instance runs in

different modes (Tag or Anchor) depending on the role configuration set at the application layer. The Tag

and Anchor modes operate as a pair to provide the two-way ranging demo functionality between two units.

Initially the unpaired anchor and tag are in a discovery phase where the unpaired tag sends a Blink message

that contains its own address, after which it listens for a Ranging Initiation response from an anchor. If it

does not get one it sleeps for a period (default of 1 second) before blinking again. The unpaired anchor

listens for tag blink messages. The anchor will then pair with a first tag it gets the Blink message from, and

send the Ranging Initiation message to exit from the Discovery Phase and enter Ranging Phase.

The ranging method uses a set of three messages to complete two-round trip measurements from which the

range is calculated. As messages are sent and received the DecaRanging application retrieves the message

send and receive times from the DW1000. These transmit and receive timestamps are used to work out a

round trip delay and calculate the range. Figure 7 shows the arrangement and general operation of the two-

way ranging as implemented by the DecaRanging application.

DecaRanging Source Code Guide

© Decawave 2015 This document is confidential and contains information which is proprietary to

Decawave Limited. No reproduction is permitted without prior express written permission of the author Page 15 of 32

Figure 7: Two way ranging in DecaRanging

Figure 8: Discovery and Ranging phase message exchanges

Once the anchor enters the Ranging phase it turns on its receiver and waits indefinitely for a poll message.

The tag sends a Poll message, and then waits for a Response message from the anchor, after which it sends a

Final message. At the end of this exchange the anchor calculates the range to the tag. The anchor will

include the TOF in the next response message to the tag. If the anchor response is not received the tag times

out and sends the Poll message again (after 500 ms sleep period). Section 6 describes the ranging algorithm

in more detail including the format of the messages exchanged and the calculations performed.

Set to operate as Anchor

Set to operate as Tag

Poll

Response

Final

Calculate

Range

Tag sleeps before

initiating another

ranging Poll

Anchor listens

for next Poll

Listen

for Poll

PSU

PSU Report

previous

ToF

Poll

Response

Final

Tag sleeps before

sending another Poll

Anchor listens

for next Poll

Unpaired Tag sends

periodic blinks, listens for

a response and sleepsBlink

Blink

Sleep

Blink

Ranging Init

Sleep

Tag sees the Ranging Init

response to pair with the anchor

Unpaired Anchor is in

listener mode looking for

tags’ blink messages

Anchor decides to pair with

this tag for ranging and sends

the Ranging Init message

Discovery Phase

Anchor calculates the range

and sends a ranging report

back to the Tag in the next

Response message

Ranging Phase

DecaRanging Source Code Guide

© Decawave 2015 This document is confidential and contains information which is proprietary to

Decawave Limited. No reproduction is permitted without prior express written permission of the author Page 16 of 32

Above this instance level is the application that provides the user interface described in section 5.5 below.

The reader is directed to Section 8 - Operational flow of execution and to the code in files instance.c and

instance_common.c for more details on this instance layer.

5.5 Top level Application code

The top level application (main.c) contains the main entry point for the DecaRanging ranging demo application

and also all the user interface code.

The ability of the application layer to display results depends on the capability of the hardware platform. On

the EVB1000 evaluation board the LCD is used to display the resultant range from a range measurement.

Figure 9: Example LCD display showing last and average range

The application also outputs some debug information over the virtual COM port. Figure 10 shows example

output from an anchor. Each TOF report starts with “i” then aXXXX and tYYYY where XXXX are the 16 LSBs of

anchor address and YYYY are the 16 LSBs of tags address. The third column is the range in mm (32 bit hex

number) after bias correction has been applied, the fourth column is the raw range in mm (32 bit hex

number). This is followed by number of ranges (16 bit hex number) and then TX and RX antenna delays (16

bit hex number). The last column is “t” for a tag and “a” for an anchor.

Figure 10: Example Teraterm Window showing the debug info sent via COM port

DecaRanging Source Code Guide

© Decawave 2015 This document is confidential and contains information which is proprietary to

Decawave Limited. No reproduction is permitted without prior express written permission of the author Page 17 of 32

5.6 Folder structure

Table 1 gives the folder structure of the DecaRanging application source code given along with a brief

description of each folder’s content. Table 2 shows the folder structure for the ST System Workbench

project. The reader is referred to the other sections of this document for more details on the code structure

and organisation.

Table 1: List of folders in the DecaRanging application

Folder Brief description

Libraries ARM and STM32 low-level layers

 CMSIS Hardware abstraction layer for ARM Cortex-M processors

 STM32_USB_Device_Library
USB library and device driver for STM32 processors

 STM32_USB_OTG_Driver

 STM32F10x_StdPeriph_Driver Hardware abstraction layer for ST STM32 F1 processors

src DecaRanging’s specific code

 application DecaRanging’s high level application and instance layers

 compiler Standard libraries inclusions

 decadriver DW1000 device driver

 platform
High level driver (including interrupt management) for
various ST and DW peripherals

 sys Standard libraries function reimplementation

 usb High level USB driver

Table 2: List of folders for the ST System Workbench project

Folder Brief description

Drivers ARM and STM32 low-level layers

 CMSIS
Hardware abstraction layer for ARM Cortex-M
processors

 STM32F1xx_HAL_Driver HAL driver for STM32 processors

 STM32F10x_StdPeriph_Driver STM 32 Peripheral drivers for F1xx series

Middlewares/
ST

STM32_USB_Device_Library USB library files

Inc Header files

Src DecaRanging’s specific code

 application
DecaRanging’s high level application and instance
layers

 compiler Standard libraries inclusions

 decadriver DW1000 device driver

 platform
High level driver (including interrupt management)
for various ST and DW peripherals

 usb High level USB driver

DecaRanging Source Code Guide

© Decawave 2015 This document is confidential and contains information which is proprietary to

Decawave Limited. No reproduction is permitted without prior express written permission of the author Page 18 of 32

6 RANGING ALGORITHM

This section describes the ranging algorithm used in the DecaRanging ranging demo application. In contrast

to some earlier versions of DecaRanging, the ranging algorithm in this code is quite efficient for two-way

ranging requiring just three messages to be exchanged for an accurate range to be calculated. This is

described below.

6.1 DecaRanging’s tag/anchor two-way ranging algorithm

For this algorithm one end acts as a tag, periodically initiating a range measurement, while the other end

acts as an anchor listening and responding to the tag and calculating the range.

 The tag sends a Poll message to the target anchor and notes the send time, TSP. The tag listens for

the Response message. If no response arrives after some period the tag will time out and send the

poll again.

 The anchor listens for a Poll message addressed to it. When the anchor receives a poll it notes the

receive time TRP, and sends a Response message back to the tag, noting its send time TSR. The anchor

also includes the time-of-flight (TOF) calculated for the previous ranging exchange.

 When the tag receives the Response message it notes the receive time TRR and sets the future send

time of the Final response message TSF, (a feature of DW1000 IC), it embeds this time in the message

before initiating the delayed sending of the Final message to the anchor. The tag also gets the TOF

from the previous ranging exchange and displays the distance.

 The anchor receiving this Final response message (at TRF) now has enough information to work out

the range. Tround1= TRR - TSP; Treply1= TSR – TRP ; Tround2= TRF - TSR; Treply2= TSF – TRR.

 It is to be noted that, for small ranges, a received signal level bias correction has to be applied to

calculated raw range. More details about this bias correction can be found in APS011 “Sources of

error in TWR schemes”.

 In the DecaRanging ranging demo the anchor will send the calculated TOF to the tag to give it

something to display. This TOF will be sent in the next Response message. Figure 11 shows this

exchange and gives the formula used in the calculation of the range.

 After this the anchor turns on its receiver again to await the next poll message, while the tag

meanwhile sleeps or counts off the delay period to the next ranging attempt.

DecaRanging Source Code Guide

© Decawave 2015 This document is confidential and contains information which is proprietary to

Decawave Limited. No reproduction is permitted without prior express written permission of the author Page 19 of 32

Figure 11: Range calculation in DecaRanging

6.2 Messages used in DecaRanging’s tag/anchor two-way ranging

Five messages are employed in the tag/anchor two-way ranging, two in the Discovery phase (the blink and

ranging initiation messages) and three in the Ranging phase (the poll message, the response message, the

final message), as shown in Figure 8. Although these follow IEEE message conventions, these are NOT

standard RTLS messages, the reader is referred to ISO/IEC 24730-62 (currently a draft international standard)

for details of message formats being standardised for use in RTLS systems based on IEEE 802.15.4 UWB. The

formats of the messages used in the demo are given below.

6.2.1 General ranging frame format

The general message format is the IEEE 802.15.4 standard encoding for a data frame. Figure 12 shows this

format. The two byte Frame Control octets are constant for the DecaRanging application because it always

uses data frames with 8-octet (64-bit) source and destination addresses, and a single 16-bit PAN ID (value

0xDECA). The only exception is the Blink message which is described in 6.2.2 below. In 802.15.4 network, the

PAN ID might be negotiated as part of associating with a network or it might be a defined constant based on

the application.

Tag

Anchor

TX

Tprop Tprop

RX

RX TX
Treply1

Tround1

time

RX

TX

Treply2

Tprop

RMARKER

Tround2

Poll

Poll Resp

Resp Final

Final

The Final message communicates the tag’s Tround and Treply times
to the anchor, which calculates the range to the tag as follows:

Tround1 × Tround2 ̶ Treply1 × Treply2

Tround1 + Tround2 + Treply1 + Treply2

Tprop =

DecaRanging Source Code Guide

© Decawave 2015 This document is confidential and contains information which is proprietary to

Decawave Limited. No reproduction is permitted without prior express written permission of the author Page 20 of 32

Figure 12: General ranging frame format

The sequence number octet is incremented modulo-256 for every frame sent, in line with IEEE rules.

The source and destination addresses are 64-bit numbers programmed uniquely into each device (during

EVB1000 manufacture). This can be used by the application to give each DW1000 based product a unique

address.

The 2-octet FCS is a CRC frame check sequence. This is generated automatically by the DW1000 IC (under

software control) and appended to the transmitted message.

The content of the ranging message portion of the frame depends on which of the three ranging messages it

is. These are shown in Figure 14 and described in sections 6.2.3 to 6.2.6. In these only the ranging message

portion of the frame is shown and discussed. This data is encapsulated in the general ranging frame format

of Figure 12 to form the complete ranging message in each case.

6.2.2 Blink frame format

The special Blink message frame format is used for sending of the Tag Blink messages. The blink frame is

simply sent without any additional application level payload, i.e. the application data field of the blink frame

is zero length. The result is a 12-octet blink frame. The encoding of the minimal blink is as shown in Figure

13.

Figure 13: the 12-octet minimal blink frame

Bit 0 Bit 1 Bit 2 Bit 3 Bit 4 Bit 5 Bit 6 Bit7

Frame Control (FC)

1 0 0

SEC PEND

0 1 0

Frame

Control (FC)

Sequence

Number
PAN ID

2 octet 1 octet 2 octets

Destination

Address

8 octets

Ranging

Message

Variable # octets

FCS

2 octets

Bit 8 Bit 9 10 11 12 13 14 15

0 0 0 0 SrcAddrMode

Source

Address

8 octets

1 1
64-bit

Data Frame

0 0 DestAddrMode

1 1
64-bit

ACK

0x41 0xCC 0xCA 0xDE

0, 1 2 3, 4 5 to 12 13 to 20 21 and upFrame buffer indices:

0xC5 Seq. Num

1 octet FC 1 octet

64-bit Tag ID

8 octets

FCS

2 octets

DecaRanging Source Code Guide

© Decawave 2015 This document is confidential and contains information which is proprietary to

Decawave Limited. No reproduction is permitted without prior express written permission of the author Page 21 of 32

 Figure 14: Ranging message encodings

6.2.3 Poll message

The poll message is sent by the tag to initiate a range measurement. For the poll message, the ranging

message portion of the frame is a single octet, with value: 0x21.

6.2.4 Response message

The response message is sent by the anchor in response to a poll message from the tag. For the response

message a single octet would be sufficient, but to allow for some future expansion possibilities a more

complex encoding has been included. Table 3 lists and describes the individual fields within the response

message.

Table 3: Fields within the ranging response message

Octet #’s Value Description

1 0x10 This octet 0x10 identifies this as an anchor response controlling the activity of the
tag

2 0x02 This activity octet tells the tag to continue with the ranging exchange

3 to 4 0x0000 This two octet parameter is unused for activity 0x02.

5 to 9 - This five octet field is the TOF from the previous ranging exchange. 40-bit DW1000
time-units.

Function

code

1 octet

Response Message

Poll Message

Final Message

Function

code

1 octet

Function

code

1 octet

Activity

1 octet

Activity

Parameter

2 octets

Poll Message

TX Time-Stamp

5 octets

Response Message

RX Time-Stamp

5 octets

Embedded Predicted

Final TX Time-Stamp

5 octets

21Frame buffer indices:

21Frame buffer indices: 22

21Frame buffer indices: 22 to 26 27 to 31 32 to 36

0x21

0x10 0x02 0x0000

0x29 - - -

23 and 24

Ranging Init Message Function

code

1 octet

21Frame buffer indices:

0x20

Response

Delay Anc

2 octets

-

24 to 25

Tag 16-bit

Address

2 octets

-

22 and 23

Previous ToF

5 octets

25 to 29

-

Response

Delay Tag

2 octets

-

26 to 27

DecaRanging Source Code Guide

© Decawave 2015 This document is confidential and contains information which is proprietary to

Decawave Limited. No reproduction is permitted without prior express written permission of the author Page 22 of 32

6.2.5 Final message

The final message is sent by the tag after receiving the anchor’s response message. The final message is 16

octets in length. Table 4 lists and describes the individual fields within the final message.

Table 4: Fields within the ranging final message

Octet #’s Value Description

1 0x29 This octet identifies the message as the tag “Final” message

2 to 6 - This five octet field is the TX timestamp for the tag’s poll message, i.e. the precise
time the frame was transmitted.

7 to 11 - This five octet field is the RX timestamp for the response poll message, i.e. the
time the tag received the response frame from the anchor.

12 to 16 - This five octet field is the TX timestamp of this final message, i.e. the precise time
the frame was (or will be) transmitted, this needs to be calculated by the tag as
described in section 6.2.5.1 below.

6.2.5.1 Final message embedded TX timestamp

The final message includes a field that is its own transmit timestamp. The tag microprocessor needs to pre-

calculate this and embed it in the message buffer before initiating the transmission of the final message.

Assuming that it has already calculated DT, the reply time to programme as the delayed send time for the

message, the embedded time is then just DT masked to clear the lower 9 bits, plus the TX antenna delay

value.

In the DecaRanging source code this calculation is done in file instance.c in state TA_TXFINAL_WAIT_SEND.

6.2.6 Ranging Initiation message

Upon receiving the Blink message the unpaired anchor will send the Ranging Initiation message to the tag

that has sent the blink message. The ranging initiation message is 5 octets in length. Table 5 lists and

describes the individual fields within the ranging initiation message.

Table 5: Fields within the ranging initiation message

Octet #’s Value Description

1 0x20 This octet 0x20 identifies the message as a range report

2 to 3 - This 16-bit field can be used by tag to change to use the specified 16-bit address.
Instead of 64-bit address.

4 to 5 - This 16-bit bit field gives the anchor response time to be used in the following
ranging exchange:

- bit 0 to 14: value
- bit 15: 0 for microseconds, 1 for milliseconds

6 to 7 - This 16-bit bit field gives the tag response time to be used in the following ranging
exchange:

- bit 0 to 14: value
- bit 15: 0 for microseconds, 1 for milliseconds

DecaRanging Source Code Guide

© Decawave 2015 This document is confidential and contains information which is proprietary to

Decawave Limited. No reproduction is permitted without prior express written permission of the author Page 23 of 32

6.3 Frame Time Adjustments

Successful ranging relies on the system being able to accurately determine the TX and RX times of the

messages as they leave one antenna and arrive at the other antenna. This is needed for antenna-to-antenna

time-of-flight measurements and the resulting antenna-to-antenna distance estimation.

The significant event making the TX and RX times is defined in IEEE 802.15.4 as the “Ranging Marker

(RMARKER): The first ultra-wide band (UWB) pulse of the first bit of the physical layer (PHY) header (PHR) of

a ranging frame (RFRAME)”. The time stamps should reflect the time instant at which the RMARKER leaves

or arrives at the antenna. However, it is the digital hardware that marks the generation or reception of the

RMARKER, so adjustments are needed to add the TX antenna delay to the TX timestamp, and, subtract the

RX antenna delay from the RX time stamp.

The EVB1000 units as part of the EVK1000 kit are paired and the antenna delays are calibrated, and

programmed into the DW1000 OTP (one-time-programmable) memory. However if a value has not been

programmed the DecaRanging application will use the default antenna delay value as set in the instance.h

file, there are two values, one for each PRF configuration (DWT_PRF_64M_RFDLY (515.6f);

DWT_PRF_16M_RFDLY (515.0f)). The value specified is divided equally between TX and RX antenna delays.

The default value has been experimentally set by adjusting it until the reported distance averaged to be the

measured distance. The need to re-tune the Antenna Delay is discussed in section 5.1 below.

The individual adjustments made to correct the timestamps are discussed below.

6.3.1 Frame Transmit-Time Adjustment

In the DW1000 the transmit time stamp is made as the RMARKER is sent by the digital circuitry.

If the TX_ANTD register value is programmed it will be automatically added to the reported TX timestamp,

and no software adjustment is necessary.

6.3.2 Frame Receive-Time Adjustment

In the DW1000, the receive time stamp is initially made as an appropriate event representing the receipt of

the RMARKER detected digital circuitry, and then a first path seek algorithm is run to find the first path more

precisely, and finally the value is adjusted by subtracting the configured RX antenna delay value. This final

adjusted RX timestamp is saved in the register and the software does not have to make any further

adjustments to the time of arrival read from the IC register.

DecaRanging Source Code Guide

© Decawave 2015 This document is confidential and contains information which is proprietary to

Decawave Limited. No reproduction is permitted without prior express written permission of the author Page 24 of 32

7 CODE / SYSTEM ISSUES

7.1 Antenna Delay

The antenna delay may need changing if a different antenna is being used.

Note: If the antenna delay value is set too large, it results in negative RTD calculation results (internally to

the software) and these RTD values are discarded as bad and no RTD / distance measurement will be

reported. In using the system, if the communication seems to be working, but the time-of-flight status lines

are not updating, then this may be because the antenna delay is set to too large a value. This can be

checked by clearing the antenna delays to zero. To tune the antenna delay to the correct value is a process

of trial and error, tweaking the antenna delay until the average distance reported matches the real antenna-

to-antenna distance measured with a tape measure.

DecaRanging Source Code Guide

© Decawave 2015 This document is confidential and contains information which is proprietary to

Decawave Limited. No reproduction is permitted without prior express written permission of the author Page 25 of 32

8 OPERATIONAL FLOW OF EXECUTION

This section is intended to be a guide to the flow of execution of the software as it runs, reading this and

following it at the same time by looking at the code should give the reader a good understanding of the basic

way the software operates as control flows through the layers to achieve transmission and reception. This

understanding should be an aid to integrating/porting the ranging function to other platforms.

To use this effectively, the reader is encouraged to browse the source code at the same time as reading this

description, and find each referred item in the source code and follow the flow as described here.

8.1 The main application entry

The application is initialised and run from the main(). Firstly we initialise the HW and various ARM

microcontroller peripherals, peripherals_init() and spi_peripheral_init() functions are used for this. Then the

instance roles (tag or anchor) and channel configurations (channel, PRF, data rate etc.) are set up by a call to

inittestapplication() function. Finally the instance_run() is called periodically from while(1) loop which runs

the instance state machine described below. In parallel the DW1000 interrupt line is enabled so any events

(e.g. transmitted frames or received frames) are processed in the dwt_isr() call.

8.2 Instance state machine

The instance state machine delivers the primary DecaRanging function of range measurement. The instance

state machine does two-way ranging by forming the messages for transmit (TX), commanding their

transmission, by commanding the receive (RX) activities, by recording the TX and RX timestamps, by

extracting the remote end’s TX and RX timestamps from the received Final messages, and, by performing

the time-of-flight calculation.

The instance code is invoked using the function testapprun(), the paragraphs below trace the flow of

execution of this instance state machine from initialisation through the TX and RX operations of a ranging

exchange. This is done primarily by looking at the operation of the tag end. It starts by sending a Blink

message and waiting to receive a Ranging Initiation message before starting ranging exchange. Then it will

send a Poll message, await a Response and then send the Final message to complete the ranging exchange.

The anchor transitions are not discussed in detailed here, but after reading the description of tag execution

flow below the reader should be well equipped to similarly follow the anchor flow of execution.

The instance_run() function is the main function for the instance; it can be run periodically or as a result of a

pending interrupt. It checks if there are any outstanding events that need to be processed and calls the

testapprun() function to process them. It also reads the message/event counters and checks if any timers

have expired. Below paragraphs describe the testapprun() sate machine in detail:

8.2.1 Initial state: TA_INIT

Function testapprun() contains the state machine that implements the two-way ranging function, the part of

the code executed depends on the state and is selected by the “switch (inst->testAppState)” statement

DecaRanging Source Code Guide

© Decawave 2015 This document is confidential and contains information which is proprietary to

Decawave Limited. No reproduction is permitted without prior express written permission of the author Page 26 of 32

at the start of the function. The initial state “case TA_INIT”1 performs initialisation and determines the next

state to run depending on whether the “inst->mode” is selecting tag or anchor operation. Let’s assume it is

a tag and follow the execution of the next state. In the case of a tag we want to send a Blink message to

allow an anchor to discover the tag and then initiate a ranging exchange, thus the state “inst-

>testAppState” is changed to “TA_TXBLINK_WAIT_SEND”.

8.2.2 State: TA_TXBLINK_WAIT_SEND

In the state “case TA_TXBLINK_WAIT_SEND”, we want to send the Blink message, so firstly we set up the

message frame control data and then fill the rest of the message with the tag address. After sending the

Blink message (using immediate send option with response expected parameter set), the state machine

state will be changed to “TA_TX_WAIT_CONF”, where the tag awaits confirmation of the frame transmission.

As the testapprun() state machine state is set to “TA_TX_WAIT_CONF”, and as that state has more than one

use, “inst->previousState = TA_TXBLINK_WAIT_SEND” is set to as a control variable.

Before starting the transmission we also configure the receiver turn on delay and RX frame wait timeout.
Receiver turn on delay is specified by inst->rnginitW4Rdelay_sy and RX frame wait timeout is specified by
inst->fwtoTimeB_sy . The delays and timeouts are calculated as part of initialisation of the application by
instancesetreplydelay() function.

As the transmission command had DWT_RESPONSE_EXPECTED set the receiver will turn on automatically and
then time out if no message is received. After timing out the tag will go to sleep (enter DEEP SLEEP mode)
and the microprocessor will wake it up after tagBlinkSleepTime_ms to restart blinking (this is done in
“TA_SLEEP_DONE” state).

8.2.3 State: TA_TXPOLL_WAIT_SEND

In the state “case TA_TXPOLL_WAIT_SEND”, we want to send the Poll message, so firstly we set up the

destination address and then we call function setupmacframedata(), which sets up the all the other

parameters/bytes of the Poll message.

The testapprun() state machine state is set to “TA_TX_WAIT_CONF”, and as that state has more than one use,

“inst->previousState = TA_TXPOLL_WAIT_SEND” is set to as a control variable.

Note: In the case if a tag sending the Poll message, this message is sent immediately. However in the case

of the anchor responses (state “case TA_TXRESPONSE_WAIT_SEND” not documented here), and tag’s Final

message (state “case TA_TXFINAL_WAIT_SEND” as described in section 8.2.10 below), it is required to send

the message at an exact and specific time with respect to the arrival of the message soliciting the response.

To do this we use delayed send. This is selected by the “delayedTx” second parameter to function

instancesendpacket().

We also configure and enable the RX frame wait timeout, so that if the response is not coming, the tag

times-out and restarts the ranging.

1 The “TA_” prefix is because these are states in the “Test Application”.

DecaRanging Source Code Guide

© Decawave 2015 This document is confidential and contains information which is proprietary to

Decawave Limited. No reproduction is permitted without prior express written permission of the author Page 27 of 32

8.2.4 State: TA_TXE_WAIT

This is the state for the tag which is called before the next ranging exchange starts (i.e. before the sending of

next Poll message) or before the next Blink message is sent. Here we check if tag needs to enter a sleep

mode before the next Poll or Blink messages are sent, and call dwt_entersleep() if sleep is required.

8.2.5 State: TA_TX_WAIT_CONF

In the state “case TA_TX_WAIT_CONF”, we await the confirmation that the message transmission has

completed. When the IC completes the transmission a “TX done” status bit is picked up by the device driver

interrupt routine which generates an event which is then processed by the TX callback function

(instance_txcallback()). The instance, after a confirmation of a successful transmission, will read and save the

TX time and then proceed to the next state (TA_RXE_WAIT) to turn on the receiver and await a response

message. The next state is thus set “inst->testAppState = TA_RXE_WAIT”. See 8.2.6 below for details of

what this does.

8.2.6 State: TA_RXE_WAIT

This is the pre-receiver enable state. Here the receiver is enabled and the instance will then proceed to the

TA_RX_WAIT_DATA where it will wait to process any received messages or will timeout. Since the receiver will

be turned on automatically (as we had DWT_RESPONSE_EXPECTED set as part of TX command), the state

changes to TA_RX_WAIT_DATA to wait for the expected response message from the anchor or timeout. We

use automatic delayed turning on of the receiver as we know the exact times the responses are sent, as they

are using delayed transmissions. This it is possible (and desirable for power efficiency) to delay turning on

the receiver until just before the response is expected. (Delayed RX is not part of the IEEE standard primitive

but is an extension to support this DW1000 feature). The next state is: “inst->testAppState =

TA_RXE_WAIT_DATA”.

Note: If a delayed transmission fails the transceiver will be disabled and the receiver will then be enabled

normally in this state.

8.2.7 State: TA_RX_WAIT_DATA

The state “case TA_RX_WAIT_DATA” is quite long because it handles all the RX messages expected. This is not

very robust behaviour. The tag should really only look for the messages expected from the anchor, (and vice

versa). We “switch (message)”, and handle message arrival as signalled by a received event. If a good frame

has been received (SIG_RX_OKAY) we look at the first byte of MAC payload data (beyond the IEEE MAC frame

header bytes) and “switch(rxmsg->messageData[FCODE])”. FCODE is a Decawave defined identifier for the

different DecaRanging messages; see Figure 14, for details.

For the point of view of the discussions here the tag is awaiting the anchor’s response or ranging initiation

message so we would expect the FCODE to match “RTLS_DEMO_MSG_ANCH_RESP” or

“RTLS_DEMO_MSG_RNG_INIT” when in Discovery phase. In this code, we note the RX timestamp of the

message “anchorRespRxTime” and calculate “delayedReplyTime” which is when we should send the Final

message to complete the ranging exchange. In this case our next (and subsequent states) are set to:

 inst->testAppState = TA_TXFINAL_WAIT_SEND ; // then send the final response

DecaRanging Source Code Guide

© Decawave 2015 This document is confidential and contains information which is proprietary to

Decawave Limited. No reproduction is permitted without prior express written permission of the author Page 28 of 32

The state “case TA_RX_WAIT_DATA” also includes code to handles the “SIG_RX_TIMEOUT” message, for the

case where the expected message does not arrive and the DW1000 triggers a frame wait timeout event. The

DW1000 has an RX timeout function to allow the host wait for IC to signal either data message interrupt or

no-data timeout interrupt2. When the timeout happens the tag will go back to restart the ranging exchange.

 Inst->testAppState = TA_TXE_WAIT ; // check if should go to sleep before next ranging
 inst->nextState = TA_TXPOLL_WAIT_SEND ; // then send the poll

8.2.8 State: TA_SLEEP_DONE

In this state the microprocessor will wake up the DW1000 from DEEP SLEEP once the sleep timeout expires.

After waking up any of the DW1000 registers that are not preserved will be re-programmed and the state

will change to inst->testAppState = inst->nextState;

Note: In order to minimise power, the microprocessor uses DW1000 RSTn pin to notify when the DW1000

enters the IDLE mode after wake up and is ready for operation. This minimises the time microprocessor

would otherwise wait before polling to check that DW1000 has entered IDLE state.

8.2.9 State: TA_TXE_WAIT

In this state “case TA_TXE_WAIT”, the tag checks if it needs to go to sleep (low power state) before starting a

new ranging exchange. If it comes into this state from sleep it will proceed to send the next Poll or Blink

message.

Note: To save power the tag could poll one anchor and then “sleep” for a length of time before polling the

same anchor again. In the TOF RTLS system, a tag might poll and range with a number of anchors and then

enter a sleep mode before starting the process again.

8.2.10 State: TA_TXFINAL_WAIT_SEND

In the state “case TA_TXFINAL_WAIT_SEND”, we want to send the Final message.

The Final message includes embedded the TX time-stamp of the tag’s poll message “inst->tagPollTxTime”

along with the RX time-stamp of the anchors response message “inst->anchorRespRxTime” and the

embedded predicted (calculated) TX time-stamp for the final message itself which includes adding the

antenna delay “inst->txantennaDelay”.

So, now the Final message is composed and we call the “setupmacframedata()” function to prepare the rest

of the message structure. The final message is sent at a specific time with respect to the arrival of the

message soliciting the response, this is done using delayed send, selected by the “delayedTx” second

parameter to function “instancesendpacket()”.

We finish the processing by setting control variable “inst->previousState = TA_TXFINAL_WAIT_SEND” to

indicate where we are coming from and we set the “inst->testAppState = TA_TX_WAIT_CONF” selecting

this as the new state for the next call of the “testapprun()” state machine.

2 This idea here (although no code is yet written for this) is to facilitate the host processor entering a low power state until

awakened by either the RX data arriving or the no data timeout.

DecaRanging Source Code Guide

© Decawave 2015 This document is confidential and contains information which is proprietary to

Decawave Limited. No reproduction is permitted without prior express written permission of the author Page 29 of 32

8.2.11 State: TA_TX_WAIT_CONF (for Final message TX)

In the state “case TA_TX_WAIT_CONF”, (as detailed in section 8.2.5 above) we await the confirmation that the

message transmission has completed.

When we get this, we use the “inst->previousState == TA_TXFINAL_WAIT_SEND” to identify that we are a

tag who has just sent the final and we go on to send another poll message (perhaps after a sleep period of

inactivity).

8.2.12 CONCLUSION

The above should be enough of a walkthrough of the state machine that the reader should be able to

decipher the anchor activity (and any remaining activity of tag).

In summary the anchor waits indefinitely in the state “case TA_RX_WAIT_DATA” until it receives a blink

message. Then it will associate with the tag that sent it and send the ranging initiation message. Once it

receives the poll it starts the ranging exchange and finishes with a calculation of TOF (range) report, which it

reports to the LCD.

DecaRanging Source Code Guide

© Decawave 2015 This document is confidential and contains information which is proprietary to

Decawave Limited. No reproduction is permitted without prior express written permission of the author Page 30 of 32

9 BIBLIOGRAPHY

Ref Author Title

[1] Decawave/ST 01_Installation of the tools and drivers.pdf

[2] Decawave DW1000 Data Sheet

[3] Decawave DW1000 User Manual

[4] Decawave EVK1000 User Manual

[5] Decawave
DecaRanging Ranging Demo Application (PC Version) User Guide

[6] IEEE

IEEE 802.15.4‐2011 or “IEEE Std 802.15.4™‐2011” (Revision of
IEEE Std 802.15.4-2006).

IEEE Standard for Local and metropolitan area networks— Part 15.4:
Low-Rate Wireless Personal Area Networks (LR-WPANs). IEEE
Computer Society Sponsored by the LAN/MAN Standards Committee.

Available from http://standards.ieee.org/

[7] Decawave APS011: Sources of error in TWR schemes

10 DOCUMENT HISTORY

Revision Date Description

1.5 20th December 2013 Initial release for production device.

1.7 11th November, 2014 Scheduled update

1.8

1.9 30th September, 2015 Scheduled update

2.0 1st September, 2016 Scheduled update

2.1 30th July, 2018 Added reference to CubeMX project and updated with new Logo

11 MAJOR CHANGES

11.1 Release 1.7

Page Change Description

All Update of version number to 1.7

All Various typographical changes

3 Added Decawave’s disclaimer

http://standards.ieee.org/

DecaRanging Source Code Guide

© Decawave 2015 This document is confidential and contains information which is proprietary to

Decawave Limited. No reproduction is permitted without prior express written permission of the author Page 31 of 32

11.2 Release 1.8

Page Change Description

All Update of version number to 1.8

All Various typographical changes

3 New Disclaimer as new source includes ST’s library files

12 Updated the description of text output over VCOM port

18 Corrected Figure 9

24 Added a new tool chain for the build

11.3 Release 1.9

Page Change Description

All Update of version number to 1.9

All Various typographical changes

8-9 Added sections 1 and 2

12 Updated the description of text output over VCOM port

18 Section 5 – description of the new asymmetric TWR algorithm

26 Section 7 – updated the section to reflect the new algorithm

11.4 Release 2.0

Page Change Description

All Update of version number to 2.0

20 Fix broken reference link.

22 Fix Table 4

11.5 Release 2.1

Page Change Description

All Update of version number to 2.1

All Add references to ST System Workbench IDE project files, and new HAL generated by Cube MX tool.

All New Logo

DecaRanging Source Code Guide

© Decawave 2015 This document is confidential and contains information which is proprietary to

Decawave Limited. No reproduction is permitted without prior express written permission of the author Page 32 of 32

12 FURTHER INFORMATION

Decawave develops semiconductors solutions, software, modules, reference designs - that enable real-time,

ultra-accurate, ultra-reliable local area micro-location services. Decawave’s technology enables an entirely

new class of easy to implement, highly secure, intelligent location functionality and services for IoT and smart

consumer products and applications.

For further information on this or any other Decawave product, please refer to our website

www.decawave.com.

www.decawave.com.

	1 Introduction
	2 Building and Running the Code
	2.1 External Libraries
	2.2 Building the code

	3 Programming EVB1000
	3.1 Purchase the ST-Link/V2 JTAG Programmer
	3.2 Install ST-LINK driver utility
	3.3 Connect ST-LINK to the EVB1000 Evaluation Board and loading the built image

	4 Overview
	5 Detailed description of DecaRanging code structure
	5.1 Target Specific Code
	5.2 Abstract SPI Driver – SPI Level code
	5.3 Device Driver – DW1000 Device Level Code
	5.4 Instance Code
	5.5 Top level Application code
	5.6 Folder structure

	6 Ranging Algorithm
	6.1 DecaRanging’s tag/anchor two-way ranging algorithm
	6.2 Messages used in DecaRanging’s tag/anchor two-way ranging
	6.2.1 General ranging frame format
	6.2.2 Blink frame format
	6.2.3 Poll message
	6.2.4 Response message
	6.2.5 Final message
	6.2.5.1 Final message embedded TX timestamp

	6.2.6 Ranging Initiation message

	6.3 Frame Time Adjustments
	6.3.1 Frame Transmit-Time Adjustment
	6.3.2 Frame Receive-Time Adjustment

	7 Code / System Issues
	7.1 Antenna Delay

	8 Operational flow of execution
	8.1 The main application entry
	8.2 Instance state machine
	8.2.1 Initial state: TA_INIT
	8.2.2 State: TA_TXBLINK_WAIT_SEND
	8.2.3 State: TA_TXPOLL_WAIT_SEND
	8.2.4 State: TA_TXE_WAIT
	8.2.5 State: TA_TX_WAIT_CONF
	8.2.6 State: TA_RXE_WAIT
	8.2.7 State: TA_RX_WAIT_DATA
	8.2.8 State: TA_SLEEP_DONE
	8.2.9 State: TA_TXE_WAIT
	8.2.10 State: TA_TXFINAL_WAIT_SEND
	8.2.11 State: TA_TX_WAIT_CONF (for Final message TX)
	8.2.12 CONCLUSION

	9 Bibliography
	10 Document History
	11 Major Changes
	11.1 Release 1.7
	11.2 Release 1.8
	11.3 Release 1.9
	11.4 Release 2.0
	11.5 Release 2.1

	12 Further information

