

© Decawave Ltd 2016 Version 2.7 Page 1 of 101

DW1000 DEVICE DRIVER API GUIDE

 DW1000 DEVICE

DRIVER APPLICATION

PROGRAMMING

INTERFACE (API) GUIDE

USING API FUNCTIONS TO

CONFIGURE AND PROGRAM THE

DW1000 UWB TRANSCEIVER

This document is subject to change without notice

DW1000 Device Driver API Guide

© Decawave Ltd 2016 Version 2.7 Page 2 of 101

DOCUMENT INFORMATION

Disclaimer

Decawave reserves the right to change product specifications without notice. As far as possible changes to

functionality and specifications will be issued in product specific errata sheets or in new versions of this

document. Customers are advised to check the Decawave website for the most recent updates on this

product

Copyright © 2015 Decawave Ltd

LIFE SUPPORT POLICY

Decawave products are not authorized for use in safety-critical applications (such as life support) where a

failure of the Decawave product would reasonably be expected to cause severe personal injury or death.

Decawave customers using or selling Decawave products in such a manner do so entirely at their own risk

and agree to fully indemnify Decawave and its representatives against any damages arising out of the use of

Decawave products in such safety-critical applications.

Caution! ESD sensitive device.

Precaution should be used when handling the device in order to prevent permanent damage

DW1000 Device Driver API Guide

© Decawave Ltd 2016 Version 2.7 Page 3 of 101

DISCLAIMER

This Disclaimer applies to the DW1000 API source code (collectively “Decawave Software”) provided

by Decawave Ltd. (“Decawave”).

Downloading, accepting delivery of or using the Decawave Software indicates your agreement to the

terms of this Disclaimer. If you do not agree with the terms of this Disclaimer do not download,

accept delivery of or use the Decawave Software.

Decawave Software is solely intended to assist you in developing systems that incorporate

Decawave semiconductor products. You understand and agree that you remain responsible for using

your independent analysis, evaluation and judgment in designing your systems and products. THE

DECISION TO USE DECAWAVE SOFTWARE IN WHOLE OR IN PART IN YOUR SYSTEMS AND PRODUCTS

RESTS ENTIRELY WITH YOU.

DECAWAVE SOFTWARE IS PROVIDED "AS IS". DECAWAVE MAKES NO WARRANTIES OR

REPRESENTATIONS WITH REGARD TO THE DECAWAVE SOFTWARE OR USE OF THE DECAWAVE

SOFTWARE, EXPRESS, IMPLIED OR STATUTORY, INCLUDING ACCURACY OR COMPLETENESS.

DECAWAVE DISCLAIMS ANY WARRANTY OF TITLE AND ANY IMPLIED WARRANTIES OF

MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT OF ANY THIRD

PARTY INTELLECTUAL PROPERTY RIGHTS WITH REGARD TO DECAWAVE SOFTWARE OR THE USE

THEREOF.

DECAWAVE SHALL NOT BE LIABLE FOR AND SHALL NOT DEFEND OR INDEMNIFY YOU AGAINST ANY

THIRD PARTY INFRINGEMENT CLAIM THAT RELATES TO OR IS BASED ON THE DECAWAVE SOFTWARE

OR THE USE OF THE DECAWAVE SOFTWARE WITH DECAWAVE SEMICONDUCTOR TECHNOLOGY. IN

NO EVENT SHALL DECAWAVE BE LIABLE FOR ANY ACTUAL, SPECIAL, INCIDENTAL, CONSEQUENTIAL

OR INDIRECT DAMAGES, HOWEVER CAUSED, INCLUDING WITHOUT LIMITATION TO THE GENERALITY

OF THE FOREGOING, LOSS OF ANTICIPATED PROFITS, GOODWILL, REPUTATION, BUSINESS RECEIPTS

OR CONTRACTS, COSTS OF PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,

DATA, OR PROFITS; OR BUSINESS INTERRUPTION), LOSSES OR EXPENSES RESULTING FROM THIRD

PARTY CLAIMS. THESE LIMITATIONS WILL APPLY REGARDLESS OF THE FORM OF ACTION, WHETHER

UNDER STATUTE, IN CONTRACT OR TORT INCLUDING NEGLIGENCE OR ANY OTHER FORM OF ACTION

AND WHETHER OR NOT DECAWAVE HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES,

ARISING IN ANY WAY OUT OF DECAWAVE SOFTWARE OR THE USE OF DECAWAVE SOFTWARE.

You are authorized to use Decawave Software in your end products and to modify the Decawave

Software in the development of your end products. HOWEVER, NO OTHER LICENSE, EXPRESS OR

IMPLIED, BY ESTOPPEL OR OTHERWISE TO ANY OTHER DECAWAVE INTELLECTUAL PROPERTY RIGHT,

AND NO LICENSE TO ANY THIRD PARTY TECHNOLOGY OR INTELLECTUAL PROPERTY RIGHT, IS

GRANTED HEREIN, including but not limited to any patent right, copyright, mask work right, or other

intellectual property right relating to any combination, machine, or process in which Decawave

semiconductor products or Decawave Software are used.

You acknowledge and agree that you are solely responsible for compliance with all legal, regulatory

and safety-related requirements concerning your products, and any use of Decawave Software in

DW1000 Device Driver API Guide

© Decawave Ltd 2016 Version 2.7 Page 4 of 101

your applications, notwithstanding any applications-related information or support that may be

provided by Decawave.

Decawave reserves the right to make corrections, enhancements, improvements and other changes

to its software at any time.

Mailing address: -

Decawave Ltd.,

Adelaide Chambers,

Peter Street,

Dublin D08 T6YA

DW1000 Device Driver API Guide

© Decawave Ltd 2016 Version 2.7 Page 5 of 101

TABLE OF CONTENTS

1 INTRODUCTION AND OVERVIEW ... 10

2 GENERAL FRAMEWORK ... 11

3 TYPICAL SYSTEM START-UP ... 13

4 INTERRUPT HANDLING .. 14

5 API FUNCTION DESCRIPTIONS ... 15

5.1 DWT_APIVERSION .. 15

5.2 DWT_READDEVID ... 15

5.3 DWT_GETPARTID .. 16

5.4 DWT_GETLOTID ... 16

5.5 DWT_GETICREFVOLT ... 17

5.6 DWT_GETICREFTEMP .. 17

5.7 DWT_SETLOCALDATAPTR ... 18

5.8 DWT_OTPREVISION ... 18

5.9 DWT_SOFTRESET .. 19

5.10 DWT_RXRESET ... 19

5.11 DWT_INITALISE .. 20

5.12 DWT_CONFIGURE ... 22

5.13 DWT_CONFIGURETXRF .. 25

5.14 DWT_SETSMARTTXPOWER ... 27

5.15 DWT_SETRXANTENNADELAY ... 28

5.16 DWT_SETTXANTENNADELAY ... 28

5.17 DWT_WRITETXDATA ... 29

5.18 DWT_WRITETXFCTRL ... 30

5.19 DWT_STARTTX ... 31

5.20 DWT_SETDELAYEDTRXTIME .. 32

5.21 DWT_READTXTIMESTAMP .. 33

5.22 DWT_READTXTIMESTAMPLO32 ... 34

5.23 DWT_READTXTIMESTAMPHI32 ... 34

5.24 DWT_READRXTIMESTAMP .. 35

5.25 DWT_READRXTIMESTAMPLO32 .. 35

5.26 DWT_READRXTIMESTAMPHI32 ... 35

5.27 DWT_READSYSTIME .. 36

5.28 DWT_READSYSTIMESTAMPHI32 .. 36

5.29 DWT_FORCETRXOFF .. 37

5.30 DWT_SYNCRXBUFPTRS .. 37

5.31 DWT_RXENABLE ... 37

5.32 DWT_SETSNIFFMODE .. 39

5.33 DWT_SETDBLRXBUFFMODE .. 39

5.34 DWT_SETRXTIMEOUT .. 40

5.35 DWT_SETPREAMBLEDETECTTIMEOUT ... 40

5.36 DWT_CONFIGUREFOR64PLEN ... 41

5.37 DWT_LOADOPSETTABFROMOTP .. 41

5.38 DWT_CONFIGURESLEEPCNT .. 42

5.39 DWT_CALIBRATESLEEPCNT ... 43

5.40 DWT_CONFIGURESLEEP ... 44

DW1000 Device Driver API Guide

© Decawave Ltd 2016 Version 2.7 Page 6 of 101

5.41 DWT_ENTERSLEEP .. 46

5.42 DWT_ENTERSLEEPAFTERTX ... 46

5.43 DWT_SPICSWAKEUP .. 47

5.44 DWT_SETLOWPOWERLISTENING .. 48

5.45 DWT_SETSNOOZETIME .. 49

5.46 DWT_SETCALLBACKS ... 49

5.47 DWT_SETINTERRUPT ... 51

5.48 DWT_CHECKIRQ ... 52

5.49 DWT_ISR .. 52

5.50 DWT_LOWPOWERLISTENISR ... 54

5.51 DWT_SETPANID ... 55

5.52 DWT_SETADDRESS16 .. 55

5.53 DWT_SETEUI ... 56

5.54 DWT_GETEUI ... 56

5.55 DWT_ENABLEFRAMEFILTER .. 57

5.56 DWT_ENABLEAUTOACK ... 57

5.57 DWT_SETRXAFTERTXDELAY ... 58

5.58 DWT_READRXDATA ... 59

5.59 DWT_READACCDATA ... 59

5.60 DWT_READDIAGNOSTICS ... 60

5.61 DWT_CONFIGEVENTCOUNTERS ... 62

5.62 DWT_READEVENTCOUNTERS .. 62

5.63 DWT_READTEMPVBAT ... 64

5.64 DWT_CONVERTRAWTEMPERATURE .. 65

5.65 DWT_CONVERTDEGTEMPTORAW ... 65

5.66 DWT_CONVERTRAWVOLTAGE ... 66

5.67 DWT_CONVERTVOLTSTORAW ... 66

5.68 DWT_READWAKEUPTEMP .. 67

5.69 DWT_READWAKEUPVBAT ... 67

5.70 DWT_OTPREAD .. 67

5.71 DWT_OTPWRITEANDVERIFY .. 68

5.72 DWT_SETLEDS ... 70

5.73 DWT_SETFINEGRAINTXSEQ ... 70

5.74 DWT_SETLNAPAMODE ... 71

5.75 DWT_ENABLEGPIOCLOCKS .. 71

5.76 DWT_SETGPIODIRECTION ... 72

5.77 DWT_SETGPIOVALUE... 72

5.78 DWT_GETGPIOVALUE .. 73

5.79 DWT_SETXTALTRIM .. 73

5.80 DWT_GETXTALTRIM .. 74

5.81 DWT_CONFIGCWMODE ... 74

5.82 DWT_CONFIGCONTINUOUSFRAMEMODE ... 76

5.83 DWT_CALCBANDWIDTHTEMPADJ ... 78

5.84 DWT_CALCPGCOUNT... 79

5.85 DWT_CALCPOWERTEMPADJ.. 79

5.86 DWT_READCARRIERINTEGRATOR ... 80

5.87 SPI DRIVER FUNCTIONS ... 81

5.87.1 writetospi .. 81

5.87.2 readfromspi .. 82

DW1000 Device Driver API Guide

© Decawave Ltd 2016 Version 2.7 Page 7 of 101

5.88 MUTUAL-EXCLUSION API FUNCTIONS .. 83

5.88.1 decamutexon .. 83

5.88.2 decamutexoff .. 84

5.89 SLEEP FUNCTION .. 84

5.89.1 deca_sleep .. 85

5.90 SUBSIDIARY FUNCTIONS ... 85

5.90.1 dwt_writetodevice .. 85

5.90.2 dwt_readfromdevice .. 85

5.90.3 dwt_read32bitreg ... 86

5.90.4 dwt_read32bitoffsetreg ... 86

5.90.5 dwt_write32bitreg .. 86

5.90.6 dwt_write32bitoffsetreg .. 86

5.90.7 dwt_read16bitoffsetreg ... 86

5.90.8 dwt_write16bitoffsetreg .. 86

5.90.9 dwt_read8bitoffsetreg ... 86

5.90.10 dwt_write8bitoffsetreg .. 86

6 APPENDIX 1 – DW1000 API EXAMPLES APPLICATIONS .. 87

6.1 PACKAGE STRUCTURE .. 87

6.2 BUILDING AND RUNNING THE EXAMPLES ... 88

6.2.1 Using Coocox IDE .. 88

6.2.2 Using System Workbench IDE ... 89

6.3 EXAMPLES LIST .. 89

6.3.1 Example 1a: simple TX .. 89

6.3.2 Example 1b: TX with sleep .. 89

6.3.3 Example 1c: TX with auto sleep .. 89

6.3.4 Example 1d: TX with timed sleep .. 89

6.3.5 Example 1e: TX with CCA .. 89

6.3.6 Example 2a: simple RX .. 90

6.3.7 Example 2b: simple RX configured for preamble length of 64 symbols .. 90

6.3.8 Example 2c: simple RX with diagnostics ... 90

6.3.9 Example 2d: low duty-cycle SNIFF mode ... 90

6.3.10 Example 2e: RX using double buffering .. 90

6.3.11 Example 2f: RX with XTAL trimming ... 91

6.3.12 Example 3a: TX then wait for a response ... 91

6.3.13 Example 3b: RX then send a response .. 91

6.3.14 Example 3c: TX then wait for a response with GPIOs/LEDs .. 91

6.3.15 Example 3d: TX then wait for a response using interrupts ... 91

6.3.16 Example 4a: continuous wave mode .. 91

6.3.17 Example 4b: continuous frame mode ... 92

6.3.18 Example 5a: double-sided two-way ranging (DS TWR) initiator .. 93

6.3.19 Example 5b: double-sided two-way ranging responder ... 93

6.3.20 Example 6a: single-sided two-way ranging (SS TWR) initiator ... 93

6.3.21 Example 6b: single-sided two-way ranging responder ... 93

6.3.22 Example 7a: Auto ACK TX ... 94

6.3.23 Example 7b: Auto ACK RX ... 94

6.3.24 Example 8a: Low-power listening RX .. 94

6.3.25 Example 8b: Low-power listening TX .. 94

6.3.26 Example 9a: TX Bandwidth and Power Reference Measurements ... 94

DW1000 Device Driver API Guide

© Decawave Ltd 2016 Version 2.7 Page 8 of 101

6.3.27 Example 9b: TX Bandwidth and Power Compensation ... 95

6.3.28 Example 10a: Use of DW1000 GPIO lines ... 95

7 APPENDIX 2 – BIBLIOGRAPHY: ... 96

8 DOCUMENT HISTORY .. 97

9 MAJOR CHANGES .. 97

9.1 RELEASE 1.5 ... 97

9.2 RELEASE 1.7 ... 97

9.3 RELEASE 2.0 ... 97

9.4 RELEASE 2.1 ... 98

9.5 RELEASE 2.2 ... 99

9.6 RELEASE 2.3 ... 99

9.7 RELEASE 2.4 ... 99

9.8 RELEASE 2.5 ... 99

9.9 RELEASE 2.6 ... 99

9.10 RELEASE 2.7 ... 100

10 FURTHER INFORMATION ... 101

DW1000 Device Driver API Guide

© Decawave Ltd 2016 Version 2.7 Page 9 of 101

 List of Tables

TABLE 1: CONFIG PARAMETER TO DWT_INITIALISE() FUNCTION .. 21

TABLE 2: DW1000 SUPPORTED UWB CHANNELS AND RECOMMENDED PREAMBLE CODES .. 24

TABLE 3: RECOMMENDED PREAMBLE LENGTHS .. 25

TABLE 4: RECOMMENDED PAC SIZE .. 25

TABLE 5: PGDLY RECOMMENDED VALUES ... 26

TABLE 6: TX POWER RECOMMENDED VALUES (WHEN SMART POWER IS DISABLED) ... 26

TABLE 7: TX POWER RECOMMENDED VALUES (WHEN SMART POWER IS ENABLED) .. 27

TABLE 8: MODE PARAMETER TO DWT_STARTTX() FUNCTION .. 31

TABLE 9: VALUES FOR DWT_LOADOPSETTABFROMOTP() OPS_SEL PARAMETER .. 42

TABLE 10: BITMASK VALUES FOR DWT_CONFIGURESLEEP() MODE BIT MASK .. 44

TABLE 11: BITMASK VALUES FOR DWT_CONFIGURESLEEP() WAKE BIT MASK .. 45

TABLE 12: BITMASK VALUES FOR DWT_SETINTERRUPT() INTERRUPT MASK ENABLING/DISABLING .. 51

TABLE 13: LIST OF EVENTS HANDLED BY THE DWT_ISR() FUNCTION AND SIGNALLED IN CALL-BACKS .. 53

TABLE 14: BITMASK VALUES FOR FRAME FILTERING ENABLING/DISABLING ... 57

TABLE 15: OTP MEMORY MAP .. 69

TABLE 16: MODE PARAMETER TO DWT_SETLEDS() FUNCTION .. 70

TABLE 17: CONFIG PARAMETER TO DWT_SETLANPAMODE() FUNCTION .. 71

TABLE 18: DW1000 API PACKAGE STRUCTURE FOR COOCOX BASED IDE .. 87

TABLE 19: THE API PACKAGE STRUCTURE FOR SYSTEM WORKBENCH BASED IDE.. 87

TABLE 20: BIBLIOGRAPHY ... 96

TABLE 21: DOCUMENT HISTORY... 97

List of Figures

FIGURE 1: GENERAL SOFTWARE FRAMEWORK OF DW1000 DEVICE DRIVER .. 11

FIGURE 2: TYPICAL FLOW OF INITIALISATION.. 13

FIGURE 3: INTERRUPT HANDLING .. 14

FIGURE 4: INTERRUPT HANDLING .. 54

FIGURE 5: SELECT TOOLCHAIN PATH .. 88

FIGURE 6: CONTINUOUS WAVE OUTPUT ... 92

FIGURE 7: CONTINUOUS FRAME OUTPUT .. 92

DW1000 Device Driver API Guide

© Decawave Ltd 2016 Version 2.7 Page 10 of 101

1 INTRODUCTION AND OVERVIEW

The DW1000 IC is a radio transceiver IC implementing the UWB physical layer defined in IEEE

802.15.4-2011 standard [3]. For more details of this device the reader is referred to:

• The DW1000 Data Sheet [1]

• The DW1000 User Manual [2]

This document, “DW1000 Device Driver - Application Programming Interface (API) Guide” is a guide

to the device driver software developed by Decawave to drive Decawave’s DW1000 UWB radio

transceiver IC.

The device driver is essentially a set of low-level functions providing a means to exercise the main

features of the DW1000 transceiver without having to deal with the details of accessing the device

directly through its SPI interface register set.

The device driver is provided as source code to allow it to be ported to any target microprocessor

system with an SPI interface1. The source code employs the C programming language.

The DW1000 device driver is controlled through its Application Programming Interface (API) which is

comprised of a set of functions. This document is predominately a guide to the device driver API

describing each of the API functions in detail in terms of its parameters, functionality and utility.

This document relates to: "DW1000 Device Driver Version 05.00.xx"

The device driver version information may be found in source code file “deca_version.h”.

1 Since the DW1000 is controlled through its SPI interface, an SPI interface is a mandatory requirement for the

system.

DW1000 Device Driver API Guide

© Decawave Ltd 2016 Version 2.7 Page 11 of 101

2 GENERAL FRAMEWORK

Figure 1 shows the general framework of the software system encompassing the DW1000 device

driver. The DW1000 device driver controls the DW1000 IC through its SPI interface. The DW1000

device driver abstracts the target SPI device by calling it through generic functions writetospi() and

readfromspi(). In porting the DW1000 device driver to different target hardware, the body of these

SPI functions are written/re-written/provided to drive the target microcontroller device’s physical

SPI hardware. The initialisation of the physical SPI interface mode and data rate is considered to be

part of the target system outside the DW1000 device driver.

Figure 1: General software framework of DW1000 device driver

The control of the DW1000 IC through the DW1000 device driver software is achieved via a set of

API functions, documented in section 5 – API function descriptions below, and called from the upper

layer application code.

The IRQ interrupt line output from the DW1000 IC (assuming interrupts are being employed) is

connected to the target microcontroller system’s interrupt handling logic. Again this is considered to

be outside the DW1000 device driver. It is assumed that the target systems interrupt handling logic

DW1000 API Functions

Interrupt

HandlerDW1000 Device Driver

DW1000 PHYSICAL IC

writetospi() readfromspi()
dwt_isr()

Target SPI Target IRQ

S
P

IC
L
K

S
P

IC
S

n

S
P

IM
O

S
I

S
P

IM
IS

O

IR
Q

Upper Layer / Application Code

TX

callback

RX

callbacks

S
P

I
in

iti
a

lis
a

tio
n
 a

n
d
 c

o
n
fi
g
u

ra
tio

n

Software

TX Done
RX Okay
RX Error
RX Timeout

DW1000 Device Driver API Guide

© Decawave Ltd 2016 Version 2.7 Page 12 of 101

and its associated target specific interrupt handling software will correctly identify the assertion of

the DW1000’s IRQ and will as a result call the DW1000 device driver’s interrupt handling function

dwt_isr() to process the interrupt.

The DW1000 device driver’s dwt_isr() function processes the DW1000 interrupts and calls TX and RX

call-back functions in the upper layer application code. This is done via function pointers

*cbTxDone(), *cbRxOk(), *cbRxTo and *cbRxErr() which are configured to call the upper layer

application code’s own call-back functions via the dwt_setcallbacks() API function.

Using interrupts is recommended, but it is possible to drive the DW1000 without employing

interrupts. In this case the background loop can periodically call the DW1000 device driver’s

dwt_isr() function, which will poll the DW1000 status register and process any events that are active.

The following is IMPORTANT:

Note background application activity invoking API functions employing the SPI interface can

conflict with foreground interrupt activity also needing to employ the SPI interface.

The DW1000 device driver’s interrupt handler accesses the DW1000 IC through the writetospi() and

readfromspi() functions, and, it is generally expected that the call-back functions will also access the

DW1000 IC through the DW1000 device driver’s API functions which ultimately also call the

writetospi() and readfromspi() functions.

This means that the writetospi() and readfromspi() functions need to incorporate protection

against foreground activity occurring when they are being used in the background. This is

achieved by incorporating calls to decamutexon() and decamutexoff() within the writetospi() and

readfromspi() functions to disable interrupts from the DW1000 from being recognised while the

background SPI access is in progress.

Examples of be decamutexon()and decamutexoff() within the writetospi() and readfromspi()

functions found in source code file “deca_irq.c” and the definitions of the writetospi() and

readfromspi() functions in “deca_spi.c” source file.

Other than the provisions for interrupt handling, the DW1000 device driver and its API functions are

not written to be re-entrant or for simultaneous use by multiple threads. The design in general

assumes a single caller that allows each function to complete before it is called again.

DW1000 Device Driver API Guide

© Decawave Ltd 2016 Version 2.7 Page 13 of 101

3 TYPICAL SYSTEM START-UP

Figure 2 shows the typical flow of initialisation of the DW1000 in a microprocessor system.

Figure 2: Typical flow of initialisation

Power

ON

Microprocessor initialisation of its system hardware

including the SPI interface necessary for talking to the

DW1000 via writetospi() and readfromspi() functions.

Assuming the DW1000 has been powered on it should be

in its IDLE state. The microprocessor system can call the

API functions dwt_initialise() and dwt_configure() to initialise

the DW1000 and configure it for operation.

The microprocessor system can then enable its interrupt

handling system to accept interrupts from the DW1000

and the application can progress into its normal operating

flow -- initiating a transmission or reception as appropriate

to the application and/or putting the DW1000 into a low-

power sleep mode until it is needed for operation.

DW1000 Device Driver API Guide

© Decawave Ltd 2016 Version 2.7 Page 14 of 101

4 INTERRUPT HANDLING

Figure 3 shows how the DW1000 interrupts should be processed by the microcontroller system.

Once the interrupt is active, the microcontroller’s target specific interrupt handler for that interrupt

line should get called. This in turn calls the DW1000 device driver’s interrupt handler service

routine, the dwt_isr() API function, which processes the event that triggered the interrupt.

Figure 3: Interrupt handling

The flow shown above, with the rechecking of DW1000 to check for continued IRQ line activation

and calling the dwt_isr() API function again, is only required for edge sensitive interrupts. This is

done in case another interrupt becomes pending during the processing of the first interrupt, in this

case if all interrupt sources are not cleared the IRQ line will not be de-asserted and edge sensitive

interrupt processing hardware will not see another edge. For proper level sensitive interrupts only

steps numbered 1, 2, and 3 are required – any still pending interrupt should cause the interrupt

handler to be re-invoked as soon as it finishes processing the first interrupt.

More information about individual interrupt events and associated processing is shown in Figure 4.

DW1000 IRQ

is asserted

Assuming interrupts are enabled,

target specific hardware invokes target

specific interrupt processing software

Read state of DW1000 IRQ line input

to microprocessor to check whether a

DW1000 IRQ is pending

NO

1

Call dwt_isr() the DW1000 device

driver’s interrupt handler routine

2

Clear and re-enable target specific

interrupt processing hardware for the

DW1000 IRQ line and return from the

interrupt servicing routine

3

IRQ

Pending

?

dwt_isr() will process the event that triggered the

interrupt (clearing it to enable a new interrupt on

the next event) and call the configured TX or RX

call-back functions as appropriate.

YES

Done

Return from

Interrupt

DW1000 Device Driver API Guide

© Decawave Ltd 2016 Version 2.7 Page 15 of 101

5 API FUNCTION DESCRIPTIONS

This section describes DW1000 device driver’s API function calls. The API functions are provided to

aid developers in driving the DW1000 (Decawave’s ScenSor IEEE 802.15.4 UWB transceiver IC).

These functions are implemented in the device driver source code file “deca_device.c”, written in

the ‘C’ programming language.

The device driver code interacts with the DW1000 IC using simple SPI read and write functions.

These are abstracted from the physical hardware, and are easily ported to any specific SPI

implementation of the target system. There are two SPI functions: writetospi() and readfromspi()

these prototypes are defined in the source code file “deca_spi.c”.

The functions of the device driver are covered below in individual sub-sections.

5.1 dwt_apiversion

int32 dwt_apiversion(void);

This function returns the version of the API as defined by DW1000_DRIVER_VERSION.

Parameters:

none

Return Parameters:

type Description

int32 Driver version e.g. 0x040200

Notes:

5.2 dwt_readdevid

uint32 dwt_readdevid(void);

This function returns the device identifier (DEV_ID) register value (32 bit value). It reads the DEV_ID

register (0x00) and returns the result to the caller. This may be used for instance by the application

to verify the DW IC is connected properly over the SPI bus and is running.

Parameters:

none

Return Parameters:

type description

uint32 32-bit device ID value, e.g. for DW1000 the device ID is 0xDECA0130.

DW1000 Device Driver API Guide

© Decawave Ltd 2016 Version 2.7 Page 16 of 101

Notes:

This function can be called any time to read the device ID value. A return value of 0xFFFFFFFF

indicates an error unless the device is in DEEP_SLEEP or SLEEP mode.

Example code:

 uint32 devID = dwt_readdevid();

5.3 dwt_getpartid

uint32 dwt_getpartid(void);

This function returns the part identifier as programmed in the factory during device test and

qualification.

Parameters:

none

Return Parameters:

type description

uint32 32-bit part ID value.

Notes:

This function can be called any time to read the locally stored value which will be valid after device

initialisation has been completed by a call to the dwt_initalise() API function.

Example code:

 uint32 partID = dwt_getpartid();

5.4 dwt_getlotid

uint32 dwt_getlotid(void);

This function returns the lot identifier as programmed in the factory during device test and

qualification.

Parameters:

none

Return Parameters:

type description

uint32 32-bit lot ID value.

Notes:

This function can be called any time to read the locally stored value which will be valid after device

initialisation has been completed by a call to the dwt_initalise() API function.

DW1000 Device Driver API Guide

© Decawave Ltd 2016 Version 2.7 Page 17 of 101

Example code:

 uint32 lotID = dwt_getlotid();

5.5 dwt_geticrefvolt

uint8 dwt_geticrefvolt(void);

During the IC manufacturing test, a 3.3 volt reference level is applied to the power the device and

the battery voltage reported by the battery voltage monitor SAR A/D convertor is sampled and

programmed into OTP address 0x8 (VBAT_ADDRESS). This reference value may be used to

calibrate/interpret battery voltage monitor values during IC use. The dwt_geticrefvolt() function

returns this factory reference voltage value.

Parameters:

none

Return Parameters:

type description

uint8 8-bit SAR A/D value factory measured with a 3.3 volt reference input level.

Notes:

This function can be called any time to read the locally stored value which will be valid after device

initialisation has been completed by a call to the dwt_initalise() API function.

5.6 dwt_geticreftemp

uint8 dwt_geticreftemp(void);

During the IC manufacturing test, in a controlled environment with approximately 23 °C ambient

temperature the temperature monitor SAR A/D convertor is sampled and programmed into OTP

address 0x9 (VTEMP_ADDRESS). This reference value may be used to calibrate/interpret

temperature monitor values during IC use. The dwt_geticreftemp() API function returns this factory

reference temperature value.

Parameters:

none

Return Parameters:

type description

uint8 8-bit Temperature measured value at 23 ˚C.

Notes:

This function can be called any time to read the locally stored value which will be valid after device
initialisation has been completed by a call to the dwt_initalise() API function.

DW1000 Device Driver API Guide

© Decawave Ltd 2016 Version 2.7 Page 18 of 101

5.7 dwt_setlocaldataptr

int dwt_setlocaldataptr(unsigned int index) ;

The DW1000 API uses an internal data structure to hold some local state data. The device driver is

able to handle multiple DW1000 devices by using an array of those structures, as set by the #define

of the DWT_NUM_DW_DEV pre-processor symbol. This dwt_setlocaldataptr() API function sets the

local data structure pointer to point to the element in the local array as given by the index.

Parameters:

type name description

unsigned int index
This selects the array element to point to. Must be within the array

bounds, i.e. < DWT_NUM_DW_DEV.

Return Parameters:

type description

int Return value can be either DWT_SUCCESS = 0 or DWT_ERROR = -1.

Notes:

The local device static data is an array to support multiple DW1000 devices, e.g. in testing applications

and platforms. This function selects which element of the array is being accessed. For example if two

DW1000 devices are controlled in your application then this function should be called before accessing

either of the devices to configure the local structure pointer. To handle multiple devices the low level

SPI access function also needs to be set to talk to the correct device.

5.8 dwt_otprevision

uint8 dwt_otprevision(void) ;

This function returns OTP revision as read while DW1000 was initialised with a call to dwt_initialise.

This location is suggested for customer programming, (and is used in Decawave’s evaluation board

products to identify different/changes in usage of the OTP area).

Parameters:

none

Return Parameters:

type description

uint8 8-bit OTP revision value.

DW1000 Device Driver API Guide

© Decawave Ltd 2016 Version 2.7 Page 19 of 101

Notes:

none

5.9 dwt_softreset

void dwt_softreset(void) ;

This function performs a software controlled reset of DW1000. All of the IC configuration will be

reset back to default. Please refer to the DW1000 User Manual [2] for details of IC default

configuration register values.

Parameters:

none

Return Parameters:

none

Notes:

NB: the SPI frequency has to be set to < 3 MHz before a call to this function.

This function is used to reset the IC, e.g. before applying new configuration to clear all of the

previously set values. After reset the DW1000 will be in the IDLE state, and all of the registers will

have default values. Any values programmed into the always on (AON) low-power configuration array

store will also be cleared.

Note: DW1000 RSTn pin can also be used to reset the device. Host microprocessor can use this pin to

reset the device instead of calling dwt_softreset() function. The pin should be driven low (for 10 ns)

and then left in open-drain mode. It should never be driven high.

5.10 dwt_rxreset

void dwt_rxreset(void) ;

This function performs a software controlled reset of DW1000 receiver. This can be used to put it

back to a clean state after some errors, for example.

Parameters:

none

Return Parameters:

none

Notes:

None

DW1000 Device Driver API Guide

© Decawave Ltd 2016 Version 2.7 Page 20 of 101

5.11 dwt_initalise

int dwt_initialise(int config);

This function serves two purposes. Firstly it initialises the DW1000 transceiver and secondly it sets
up values in an internal static data structure used within the device driver functions, which is private
data for use in the device driver implementation. The dwt_initalise() function can also, optionally,
kick off loading of LDE microcode, if config parameter has DWT_LOADUCODE bit set, (from the IC
ROM into its runtime location) so that it is available to for future receiver use. If this is not
configured the automatic execution of LDE (LDERUNE bit) will be disabled. The LDE algorithm is
responsible for generating an accurate RX timestamp and calculating some signal quality statistics
related to the received packet.
This function can also be called after device is woken up from DEEP SLEEP to re-populate the internal
structure (if it has not been preserved, e.g. if the microprocessor was also in low power mode and
the RAM contents were not preserved). In this instance the DW1000 device does not have to be fully
initialised as it has already loaded all of the configurations preserved during the DEEP SLEEP. The
dwt_initalise() function must have DWT_DW_WAKE_UP set in the config parameter to prevent full
DW1000 device reset. See code examples below for further info.

Parameters:

type name description

int config

This is a bitmask which specifies which configuration to load from

OTP as part of initialisation Table 1 shows the values of individual bit

fields.

Return Parameters:

type description

int Return value can be either DWT_SUCCESS = 0 or DWT_ERROR = -1.

Notes:

NB: the SPI frequency has to be set to < 3 MHz before a call to this function.

This dwt_initalise() function is the first function that should be called to initialise the device, e.g. after

the power has been applied. It reads the device ID to verify the IC is one supported by this software

(e.g. DW1000 32-bit device ID value is 0xDECA0130). Then it performs a software reset of the

DW1000 to make sure it is in its default state, and does some initial once only device configurations

(e.g. configures the clocks for normal TX/RX functionality) needed for use. It also reads some data

from OTP:

• LDO tune and crystal trim values, which are applied directly if they are valid.

• Device’s Part ID and Lot ID which are stored in driver’s local structure for future access.

If the DWT_ERROR is returned by dwt_initalise() then further configuration and operation of the IC is

not advised, as the IC will not be functioning properly.

DW1000 Device Driver API Guide

© Decawave Ltd 2016 Version 2.7 Page 21 of 101

If dwt_initalise() function is called after wakeup and no OTP reading is required, the SPI frequency can

be > 3MHz.

Table 1: Config parameter to dwt_initialise() function

Mode
Mask
Value

Description

DWT_LOADNONE 0x0 Do not load LDE microcode, and disable its running. The
timestamp after frame reception will be 0.

DWT_LOADUCODE 0x1 Loads LDE microcode (from the IC ROM into its runtime
location) so that it is available to for future receiver use.
The LDE algorithm is responsible for generating an accurate
RX timestamp and calculating some signal quality statistics
related to the received packet.

DWT_DW_WAKE_UP 0x2 Usually it is not necessary to call dwt_initalise() after sleep,
as DW IC will restore its configuration from AON, however
if the host MCU also goes to sleep and the internal data
structure is not preserved while MCU is in low-power mode,
then this should be set and dwt_initalise() called to
populate internal data structure.

DWT_DW_WUP_NO_UCODE 0x4 Must be used if no UCODE loaded, and calling
dwt_initalise() after sleep to populate internal data
structure.

DWT_DW_WUP_RD_OTPREV 0x8 Must be set if OTP reading not required when
dwt_initalise() is called after wake up.

DWT_READ_OTP_PID 0x10 Reads part ID from OTP, and stores it in internal structure.
The dwt_getpartid() API can then be used to access it.

DWT_READ_OTP_LID 0x20 Reads lot ID from OTP, and stores it in internal structure.
The dwt_getlotid() API can then be used to access it.

DWT_READ_OTP_BAT 0x40 Reads reference (measured @ 3.3 V) raw Voltage value
from OTP, and stores it in internal structure. The
dwt_geticrefvolt() API can then be used to access it.

DWT_READ_OTP_TMP 0x80 Reads reference (measured @ 23 ˚C) raw Temperature
value from OTP, and stores it in internal structure. The
dwt_geticreftemp() API can then be used to access it.

For more details of the OTP memory programming please refer to section dwt_otpwriteandverify().

Programming OTP memory is a one-time only activity, any values programmed in error cannot be

corrected. Also, please take care when programming OTP memory to only write to the designated

areas – programming elsewhere may permanently damage the DW1000’s ability to function

normally.

Example 1: - On power up

//Initialise DW1000 device, load OTP values and load UCODE

dwt_initialise(DWT_LOADUCODE | DWT_READ_OTP_PID | DWT_READ_OTP_LID |

DWT_READ_OTP_BAT | DWT_READ_OTP_TMP)

Example 2: - After wake up

//Initialise dw1000_local structure only, assume DW1000 already initialise as per

Example 1 above (assume OTP values are not needed)

dwt_initialise(DWT_DW_WAKE_UP | DWT_DW_WUP_RD_OTPREV)

DW1000 Device Driver API Guide

© Decawave Ltd 2016 Version 2.7 Page 22 of 101

5.12 dwt_configure

void dwt_configure(dwt_config_t *config);

This function is responsible for setting up the channel configuration parameters for use by both the

Transmitter and the Receiver. The settings are specified by the dwt_config_t structure passed into

the function, see notes below. (Note also there is a separate function dwt_configuretxrf() for setting

certain TX parameters. This is described in section 5.13 below).

Parameters:

type name description

dwt_config_t* config

This is a pointer to the configuration structure,

which contains the device configuration data.

Individual fields are described in detail in the notes

below.

typedef struct

{

 uint8 chan ; //!< channel number {1, 2, 3, 4, 5, 7}

 uint8 prf ; //!< Pulse Repetition Frequency

//{DWT_PRF_16M or DWT_PRF_64M}

 uint8 txPreambLength; //!< DWT_PLEN_64..DWT_PLEN_4096

 uint8 rxPAC ; //!< Acquisition Chunk Size (Relates to RX

// preamble length)

 uint8 txCode ; //!< TX preamble code

 uint8 rxCode ; //!< RX preamble code

 uint8 nsSFD ; //!< Boolean, use non-std SFD for better

// performance

 uint8 dataRate ; //!< Data Rate {DWT_BR_110K, DWT_BR_850K or

// DWT_BR_6M8}

 uint8 phrMode ; //!< PHR mode:

// 0x0 - standard DWT_PHRMODE_STD

// 0x3 - extended frames

DWT_PHRMODE_EXT

 uint16 sfdTO ; //!< SFD timeout value (in symbols)

} dwt_config_t ;

Return Parameters:

none

Notes:

The dwt_configure() function should be used to configure the DW1000 channel (TX/RX) parameters

before receiver enable or before issuing a start transmission command. It can be called again to

change configurations as needed, however before using dwt_configure()the DW1000 should be

returned to idle mode using the dwt_forcetrxoff() API call.

The config parameter points to a dwt_config_t structure that has various fields to select and configure

different parameters within the DW1000. The fields of the dwt_config_t structure are identified are

individually described below:

DW1000 Device Driver API Guide

© Decawave Ltd 2016 Version 2.7 Page 23 of 101

Fields Description of fields within the dwt_config_t structure

chan
The chan parameter sets the UWB channel number, (defining the centre

frequency and bandwidth). The supported channels are 1, 2, 3, 4, 5, and 7.

txCode and rxCode

The txCode and rxCode parameters select the preamble codes to use in the

transmitter and the receiver – these are generally both set to the same values.

For correct operation of the DW1000, the selected preamble code should

follow the rules of IEEE 802.15.4-2011 UWB with respect to which codes are

allowed in the particular channel and PRF configuration, this is shown in Table

2 below.

prf

The prf parameter allows selection of the nominal PRF (pulse repetition

frequency) being used by the receiver which can be either 16 MHz or 64 MHz,

via the symbolic definitions DWT_PRF_16M and DWT_PRF_64M.

nsSFD

The nsSFD parameter enables the use of an alternate non-standard SFD (Start

Frame Delimiter) sequence, which Decawave has found to be more robust

than that specified in the IEEE 802.15.4 standard, and which therefore gives

improved performance.

dataRate

The dataRate parameter specifies the data rate to be one of 110kbps, 850kbps

or 6800kbps, via symbolic definitions DWT_BR_110K, DWT_BR_850K and

DWT_BR_6M8.

txPreambLength

The txPreambLength parameter specifies preamble length which has a range

of values given by symbolic definitions: DWT_PLEN_4096, DWT_PLEN_2048,

DWT_PLEN_1536, DWT_PLEN_1024, DWT_PLEN_512, DWT_PLEN_256,

DWT_PLEN_128, DWT_PLEN_64. Table 3 gives recommended preamble

sequence lengths to use depending on the data rate.

rxPAC

The rxPAC parameter specifies the Preamble Acquisition Chunk size to use.

Allowed values are DWT_PAC8, DWT_PAC16, DWT_PAC32 or DWT_PAC64.

Table 4 below gives the recommended PAC size to use in the receiver

depending on the preamble length being used in the transmitter. PAC size is

specified in preamble symbols, which are approximately 1 µs each.

Note: The dwt_setsniffmode() and dwt_setpreambledetecttimeout() API

functions use PACs as the unit to specify the time the receiver is on looking for

preamble.

phrMode

The phrMode parameter selects between either the standard or extended PHR

mode is set, either DWT_PHRMODE_STD for standard length frames 5 to 127

octets long or non-standard DWT_PHRMODE_EXT allowing frames of length 5

to 1023 octets long.

DW1000 Device Driver API Guide

© Decawave Ltd 2016 Version 2.7 Page 24 of 101

Fields Description of fields within the dwt_config_t structure

sfdTO

The sfdTO parameter sets the SFD timeout value. The purpose of the SFD

detection timeout is to recover from the occasional false preamble detection

events that may occur. By default this value is 4096 + 64 + 1 symbols, which is

just longer the longest possible preamble and SFD sequence. This is the

maximum value that is sensible. When it is known that a shorter preamble is

being used then the value can be reduced appropriately. The function does

not allow a value of zero. (If a 0 value is selected the default value of 4161

symbols (DWT_SFDTOC_DEF) will be used). The recommended value is

preamble length + 1 + SFD length – PAC size.

The dwt_configure() function does not error check the input parameters unless the

DWT_API_ERROR_CHECK code switch is defined. If this is defined, it will assert in case an error is

detected. It is up to the developer to ensure that the assert macro is correctly enabled in order to

trap any error conditions that arise. If DWT_API_ERROR_CHECK switch is not defined, error checks

are not performed.

NOTE: SFD timeout cannot be set to 0; if a zero value is passed into the function the default value will

be programmed. To minimise power consumption in the receiver, the SFD timeout of the receiving

device, sfdTO parameter, should be set according to the TX preamble length of the transmitting

device. As an example if the transmitting device is using 1024 preamble length, an SFD length of 64

and a PAC size of 32, the corresponding receiver should have sfdTO parameter set to 1057 (1024 + 1 +

64 - 32).

Table 2: DW1000 supported UWB channels and recommended preamble codes

Channel

number

Preamble Codes

(16 MHz PRF)

Preamble Codes

(64 MHz PRF)

1 1, 2 9, 10, 11, 12

2 3, 4 9, 10, 11, 12

3 5, 6 9, 10, 11, 12

4 7, 8 17, 18, 19, 20

5 3, 4 9, 10, 11, 12

7 7, 8 17, 18, 19, 20

In addition to the preamble codes in shown in Table 2 above, for 64 MHz PRF there are eight additional

preamble codes, (13 to 16, and 21 to 24), available for use on all channels. These should only be

selected as part of implementing dynamic preamble selection (DPS). Please refer to the IEEE 802.15.4-

2011 standard [3] for more details of the dynamic preamble selection technique.

The preamble sequence used on a particular channel is the same at all data rates, however its length,

(i.e. the number of symbol times for which it is repeated), has a significant effect on the operational

range. Table 3 gives some recommended preamble sequence lengths to use depending on the data

DW1000 Device Driver API Guide

© Decawave Ltd 2016 Version 2.7 Page 25 of 101

rate. In general, a longer preamble gives improved range performance and better first path time of

arrival information while a shorter preamble gives a shorter air time and saves power. When

operating a low data rate for long range, then a long preamble is needed to achieve that range. At

higher data rates the operating range is naturally shorter so there is no point in sending an overly long

preamble as it wastes time and power for no added range advantage.

Table 3: Recommended preamble lengths

Data Rate
Recommended preamble

sequence length

6.8Mbps 64 or 128 or 256

850kbps 256 or 512 or 1024

110kbps 1024 or 1536, or 2048

The preamble sequence is detected by cross-correlating in chunks which are a number of preamble

symbols long. The size of chunk used is selected by the PAC size configuration, which should be

selected depending on the expected preamble size. A larger PAC size gives better performance when

the preamble is long enough to allow it. But if the PAC size is too large for the preamble length then

receiver performance will reduce, or fail to work at the extremes – (e.g. a PAC of 64 will never receive

frames with just 64 preamble symbols). Table 4 below gives the recommended PAC size configuration

to use in the receiver depending on the preamble length being used in the transmitter.

Table 4: Recommended PAC size

Expected preamble length
of frames being received

Recommended PAC size

64 8

128 8

256 16

512 16

1024 32

1536 64

2048 64

4096 64

See also: dwt_configuretxrf() for setting certain TX parameters

 dwt_setsniffmode() for setting certain RX (preamble hunt) operating mode.

5.13 dwt_configuretxrf

void dwt_configuretxrf(dwt_txconfig_t *config);

The dwt_configuretxrf() function is responsible for setting up the transmit RF configuration

parameters. One is the pulse generator delay value which sets the width of transmitted pulses

effectively setting the output bandwidth. The other value is the transmit output power setting.

Parameters:

DW1000 Device Driver API Guide

© Decawave Ltd 2016 Version 2.7 Page 26 of 101

type name description

dwt_txconfig_t* config This is a pointer to the TX parameters configuration structure, which

contains the device configuration data. Individual fields are

described in detail below.

typedef struct

{

 uint8 PGdly; //Pulse generator delay value

 uint32 power; //the TX power – 4 bytes

} dwt_txconfig_t ;

Return Parameters:

none

Notes:

This function can be called any time and it will configure the DW1000 spectrum parameters. The

config parameter points to a dwt_txconfig_t structure (shown below) with fields to configure the

pulse generator delay (PGdly) and TX power (power). Recommended values for PGdly are given in

Table 5 below.

Table 5: PGdly recommended values

TX Channel recommended PGdly value

1 0xC9

2 0xC2

3 0xC5

4 0x95

5 0xC0

7 0x93

Table 6: TX power recommended values (when smart power is disabled)

TX Channel
recommended TX power value

16 MHz

recommended TX power value

64 MHz

1 0x75757575 0x67676767

2 0x75757575 0x67676767

3 0x6F6F6F6F 0x8B8B8B8B

4 0x5F5F5F5F 0x9A9A9A9A

5 0x48484848 0x85858585

7 0x92929292 0xD1D1D1D1

DW1000 Device Driver API Guide

© Decawave Ltd 2016 Version 2.7 Page 27 of 101

Table 6 above includes the recommended TX power spectrum vales, for use in the case of smart

power being disabled using the dwt_setsmarttxpower() API function, while Table 7 below applies

when smart power is enabled.

Table 7: TX power recommended values (when smart power is enabled)

TX Channel
recommended TX power value

16 MHz

recommended TX power value

64 MHz

1 0x15355575 0x07274767

2 0x15355575 0x07274767

3 0x0F2F4F6F 0x2B4B6B8B

4 0x1F1F3F5F 0x3A5A7A9A

5 0x0E082848 0x25456585

7 0x32527292 0x5171B1D1

NB: The values in Table 6 and Table 7 have been chosen to suit Decawave’s EVB1000 evaluation

boards. For other hardware designs the values here may need to be changed as part of the transmit

power calibration activity, and there is a location in OTP memory where the calibrated values can be

stored and then read as part of device initialisation (see function dwt_initalise()). Please consult with

Decawave’s applications support team for details of transmit power calibration procedures and

considerations.

5.14 dwt_setsmarttxpower

void dwt_setsmarttxpower(int enable);

This function enables or disables smart TX power functionality of DW1000.

Parameters:

type name description

int enable 1 to enable, 0 to disable the smart TX power feature.

Return Parameters:

none

Notes:

This function enables or disables smart TX power functionality.

Regional power output regulations typically specify the transmit power limit as -41 dBm in each 1

MHz of channel bandwidth, and generally measure this using a 1 ms dwell time in each 1 MHz

segment. When sending short frames at 6.8 Mbps it is possible for a single frame to be sent in a

fraction of a millisecond, and then as long as the transmitter does not transmit again within that same

millisecond the power of that transmission can be increased and still comply with the regulations.

This power increase will increase the transmission range. To make use of this the DW1000 includes

functionality we call “Smart Transmit Power Gating” which automatically boosts the TX power for a

transmission when the frame is short.

DW1000 Device Driver API Guide

© Decawave Ltd 2016 Version 2.7 Page 28 of 101

Smart TX power control acts at the 6.8 Mbps data rate. When sending short data frames at this rate

(and providing that the frame transmission rate is at most 1 frame per millisecond) it is possible to

increase the transmit power and still remain within regulatory power limits which are typically

specified as average power per millisecond.

NB: When enabling/disabling smart TX power, the TX power values programmed via the

dwt_configuretxrf() function also need to be set accordingly. When smart TX power is disabled the

appropriate value from Table 6 should be used, and when smart TX power is enabled the appropriate

value from Table 7 should be used. The values in Table 6 and Table 7 have been chosen to suit

Decawave’s evaluation boards. For other hardware designs the values here may need to be changed

as part of the transmit power calibration activity. Please consult with Decawave’s applications

support team for details of transmit power calibration procedures and considerations.

5.15 dwt_setrxantennadelay

void dwt_setrxantennadelay(uint16 antennaDelay);

This function sets the RX antenna delay. The antennaDelay value passed is programmed into the RX

antenna delay register. This needs to be set so that the RX timestamp is correctly adjusted to

account for the time delay between the antenna and the internal digital RX timestamp event. This is

determined by a calibration activity. Please consult with Decawave applications support team for

details of antenna delay calibration procedures and considerations.

Parameters:

type name description

uint16 antennaDelay The delay value is in DWT_TIME_UNITS (15.65 picoseconds ticks)

Return Parameters:

none

Notes:

This function is used to program the RX antenna delay.

5.16 dwt_settxantennadelay

void dwt_settxantennadelay(uint16 antennaDelay);

This function sets the TX antenna delay. The antennaDelay value passed is programmed into the TX

antenna delay register. This needs to be set so that the TX timestamp is correctly adjusted to

account for the time delay between internal digital TX timestamp event and the signal actually

leaving the antenna. This is determined by a calibration activity. Please consult with Decawave

applications support team for details of antenna delay calibration procedures and considerations.

Parameters:

DW1000 Device Driver API Guide

© Decawave Ltd 2016 Version 2.7 Page 29 of 101

type name description

uint16 antennaDelay The delay value is in DWT_TIME_UNITS (15.65 picoseconds ticks)

Return Parameters:

none

Notes:

This function is used to program the TX antenna delay.

5.17 dwt_writetxdata

int dwt_writetxdata(uint16 txFrameLength, uint8 *txFrameBytes, uint16 txBufferOffset) ;

This function is used to write the TX message data into the DW1000 TX buffer.

Parameters:

type name description

uint16 txFrameLength This is the total frame length, including the two byte CRC.

uint8* txFrameBytes Pointer to the buffer containing the data to send.

uint16 txBufferOffset
This specifies an offset in the DW1000’s TX Buffer at which to

start writing data.

Return Parameters:

type description

int Return value can be either DWT_SUCCESS = 0 or DWT_ERROR = -1.

Notes:

This function writes two bytes less than the specified txFrameLength from the memory, pointed to by

the txFrameBytes parameter, into the DW1000 IC’s transmit data buffer, starting at the specified

offset (txBufferOffset). During transmission, the DW1000 will automatically add the two CRC bytes to

complete the TX frame to its full txFrameLength.

NOTE: standard PHR mode allows frames of up to 127 bytes. For longer lengths non-standard PHR

mode DWT_PHRMODE_EXT needs to be set in the phrMode configuration passed into the

dwt_configure() function.

The dwt_writetxdata() function checks that the sum of txFrameLength and txBufferOffset is less than

DW1000’s TX buffer length to avoid messing with DW1000’s other registers and memory. If such an

error occurs, the write is not performed and the function returns DWT_ERROR. Otherwise, the

functions returns DWT_SUCCESS.

DW1000 Device Driver API Guide

© Decawave Ltd 2016 Version 2.7 Page 30 of 101

If DWT_API_ERROR_CHECK code switch is defined, the function will perform additional checks on

input parameters. If an error is detected, the function will assert. It is up to the developer to ensure

that the assert macro is correctly enabled in order to trap any error conditions that arise.

Example code:

Typical usage is to write the data, configure the frame control with starting buffer offset and frame

length and then enable transmission as follows:

dwt_writetxdata(frameLength,DataBufferPtr,0); // write the frame data at

// offset 0

dwt_writetxfctrl(frameLength,0,0); // set the frame control

// register

dwt_starttx(DWT_START_TX_IMMEDIATE); // send the frame

5.18 dwt_writetxfctrl

void dwt_writetxfctrl(uint16 txFrameLength, uint16 txBufferOffset, int ranging) ;

This function is used to configure the TX frame control register.

Parameters:

type name description

uint16 txFrameLength This is the total frame length, including the two byte CRC.

uint16 txBufferOffset
This specifies an offset in the DW1000’s TX Buffer at which to

start writing data.

int ranging

This specifies whether the TX frame is a ranging frame or not, i.e.

whether the ranging bit is set in the PHY header (PHR) of the

frame. A value of 1 will cause the ranging bit to be set in the PHR

of the outgoing frame, while a value of 0 will cause it to be clear.

Return Parameters:

none

Notes:

This function configures the TX frame control register parameters, namely the length of the frame and

the offset in the DW1000 IC’s transmit data buffer where the data starts. It also controls whether the

ranging bit is set in the frame’s PHR.

The ranging bit identifies a frame as a ranging frame. This has no operational effect on the DW1000,

but in some receiver implementations, it might be used to enable hardware or software associated

with time stamping the frame. In the DW1000 receiver, the time stamping does not depend or use

the ranging bit in the received PHR. The status of the ranging bit in received frames is reported by the

cbRxOk function (if enabled) in the rx_flags element of its dwt_cb_data_t structure parameter. See

the dwt_isr() and the dwt_setcallbacks() functions.

The dwt_writetxfctrl() function does not error check the txFrameLength input parameter unless the

DWT_API_ERROR_CHECK code switch is defined. If this is defined it will assert if an error is detected.

It is up to the developer to ensure that the assert macro is correctly enabled in order to trap any error

conditions that arise.

DW1000 Device Driver API Guide

© Decawave Ltd 2016 Version 2.7 Page 31 of 101

Example code:

Typical usage is to write the data, configure the frame control with starting buffer offset and frame

length and then enable transmission as follows:

dwt_writetxdata(frameLength,DataBufferPtr,0); // write the frame data at

 // offset 0

dwt_writetxfctrl(frameLength,0,0); // set the frame control

// register

dwt_starttx(DWT_START_TX_IMMEDIATE); // send the frame

5.19 dwt_starttx

int dwt_starttx(uint8 mode) ;

This function initiates transmission of the frame. The mode parameter is described below.

Parameters:

type name description

uint8 mode
This is a bit mask defining the operation of the function, see notes and

Table 8 below.

Return Parameters:

type description

int Return value can be either DWT_SUCCESS = 0 or DWT_ERROR = -1.

Notes:

This function is called to start the transmission of a frame.

Transmission begins immediately if the mode parameter is zero. When the mode parameter is 1

transmission begins when the system time reaches the starttime specified in the call to the

dwt_setdelayedtrxtime() function described below. The mode parameter, when 2 or 3, is used to turn

the receiver on immediately after the TX event is complete (see table below). This is used to make

sure that there are no delays in turning on the receiver and that the DW1000 can start receiving data

(e.g. ACK/response) which might come within 12 symbol times from the end of transmission. It

returns 0 for success, or -1 for error.

In performing a delayed transmission, if the host microprocessor is late in invoking the dwt_starttx()

function, (i.e. so that the DW1000’s system clock has passed the specified starttime and would have

to complete almost a whole clock count period before the start time is reached), then the

transmission is aborted (transceiver off) and the dwt_starttx() function returns the -1 error indication.

Table 8: Mode parameter to dwt_starttx() function

Mode
Mask
Value

Description

DWT_START_TX_IMMEDIATE 0x0 The transmitter starts sending frame immediately.

DW1000 Device Driver API Guide

© Decawave Ltd 2016 Version 2.7 Page 32 of 101

Mode
Mask
Value

Description

DWT_START_TX_DELAYED 0x1

The transmitter will start sending a frame once the
programmed starttime is reached.

See dwt_setdelayedtrxtime().

DWT_RESPONSE_EXPECTED 0x2
Response is expected, once the frame is sent the transceiver
will enter receive mode to wait for response message. See
dwt_setrxaftertxdelay().

DWT_START_TX_DELAYED +
DWT_RESPONSE_EXPECTED

0x3

The transmitter will start sending a frame once the
programmed delayed TX time is reached, see
dwt_setdelayedtrxtime(), and once the frame is sent the
transceiver will enter receive mode to wait for response
message.

Example code:

Typical usage is to write the data, configure the frame control with starting buffer offset and frame

length and then enable transmission as follows:

dwt_writetxdata(frameLength,DataBufferPtr,0); // write the frame data at

// offset 0

dwt_writetxfctrl(frameLength,0,0); // set the frame control

// register

dwt_starttx(DWT_START_TX_IMMEDIATE); // send the frame

5.20 dwt_setdelayedtrxtime

void dwt_setdelayedtrxtime (uint32 starttime) ;

This function sets a send time to use in delayed send or the time at which the receiver will turn on (a

delayed receive). This function should be called to set the required send time before invoking the

dwt_starttx() function (above) to initiate the transmission (in DELAYED_TX mode), or dwt_rxenable()

(below) with delayed parameter set to 1.

Parameters:

type name description

uint32 starttime

The TX or RX start time. The 32-bit value is the high 32-bits of the

system time value at which to send the message, or at which to

turn on the receiver. The low order bit of this is ignored. This

essentially sets the TX or RX time in units of approximately 8 ns.

(or more precisely 512/(499.2e6*128) seconds)

For transmission this is the raw transmit timestamp not including

the antenna delay, which will be added. For reception it specifies

the time to turn the receiver on.

Return Parameters:

none

Notes:

DW1000 Device Driver API Guide

© Decawave Ltd 2016 Version 2.7 Page 33 of 101

This function is called to program the delayed transmit or receive start time. The starttime parameter

specifies the time at which to send/start receiving, when the system time reaches this time (minus

the times it needs to send preamble etc.) then the sending of the frame begins. The actual time at

which the frame’s RMARKER transits the antenna (the standard TX timestamp event) is given by the

starttime + the transmit antenna delay. If the application wants to embed this time into the message

being sent it must do this calculation itself.

The system time counter is 40 bits wide, giving a wrap period of 17.20 seconds.

NOTE: Typically delayed sending might be used to give a fixed response delay with respect to an

incoming message arrival time, or, because the application wants to embed the message send time

into the message itself. The delayed receive might be used to save power and turn the receiver on

only when response message is expected.

Example code:

Typical usage is to write the data, configure the frame control with starting buffer offset and frame

length and then enable transmission as follows:

In this example the previous frame’s TX timestamp time is read and new TX time calculated by adding

100 ms to it. The full 40-bit representation of 100ms would be 0x17CDC0000, however as the code is

operating on just the high 32 bits a value of 0x17CDC00 is used. (The TX timestamp value should be

read after a TX done interrupt triggers.)

 uint32 dlyTxTime ;

 dlyTxTime = dwt_readtxtimestamphi32() ; // read last TX time

 dlyTxTime = dlyTxTime + 0x17CDC00; // add 100ms

dwt_writetxdata(frameLength,dataBufferPtr,0); // write the frame data at

// offset 0

dwt_writetxfctrl(frameLength,0,0); // set the frame control

// register

dwt_setdelayedtrxtime(dlyTxTime); // set previously calculated

 // TX time

r = dwt_starttx(DWT_START_TX_DELAYED); // send the frame at

// appropriate time

if (r != DWT_SUCCESS)

{

 // start TX was late, TX has been aborted.

 // Application should take appropriate recovery activity

}

5.21 dwt_readtxtimestamp

void dwt_readtxtimestamp(uint8* timestamp);

This function reads the actual time at which the frame’s RMARKER transits the antenna (the

standard TX timestamp event). This time will include any TX antenna delay if programmed via the

dwt_settxantennadelay() API function. The function returns a 40-bit timestamp value in the buffer

passed in as the input parameter.

Parameters:

DW1000 Device Driver API Guide

© Decawave Ltd 2016 Version 2.7 Page 34 of 101

type name description

uint8* timestamp

The pointer to the buffer into which the timestamp value is read.

(The buffer needs to be at least 5 bytes long.) The low order byte

is the first element.

Return Parameters:

none

Notes:

This function can be called after the transmission complete event, DWT_INT_TFRS (see dwt_isr()

function).

5.22 dwt_readtxtimestamplo32

uint32 dwt_readtxtimestamplo32(void);

This function returns the low 32-bits of the 40-bit transmit timestamp.

Parameters:

none

Return Parameters:

type description

uint32 Low 32-bits of the 40-bit transmit timestamp.

Notes:

This function can be called after the transmission complete event, DWT_INT_TFRS (see dwt_isr()

function).

5.23 dwt_readtxtimestamphi32

uint32 dwt_readtxtimestamphi32(void);

This function returns the high 32-bits of the 40-bit transmit timestamp.

Parameters:

none

Return Parameters:

type description

uint32 High 32-bits of the 40-bit transmit timestamp.

Notes:

DW1000 Device Driver API Guide

© Decawave Ltd 2016 Version 2.7 Page 35 of 101

This function can be called after the transmission complete event, DWT_INT_TFRS (see dwt_isr()

function).

5.24 dwt_readrxtimestamp

void dwt_readrxtimestamp(uint8* timestamp);

This function returns the time at which the frame’s RMARKER is received, including the antenna

delay adjustments if this is programmed via the dwt_setrxantennadelay() API function. The function

returns a 40-bit value.

Parameters:

type name description

uint8* timestamp The pointer to the buffer into which the timestamp value is read.

(The buffer needs to be at least 5 bytes long.) The low order byte

is the first element.

Return Parameters:

none

Notes:

This function can be called after the frame received event, DWT_INT_RFCG (see dwt_isr() function).

5.25 dwt_readrxtimestamplo32

uint32 dwt_readrxtimestamplo32(void);

This function returns the low 32-bits of the 40-bit received timestamp.

Parameters:

none

Return Parameters:

type description

uint32 Low 32-bits of the 40-bit received timestamp.

Notes:

This function can be called after the frame received event, DWT_INT_RFCG (see dwt_isr() function).

5.26 dwt_readrxtimestamphi32

uint32 dwt_readrxtimestamphi32(void);

This function returns the high 32-bits of the 40-bit received timestamp.

Parameters:

DW1000 Device Driver API Guide

© Decawave Ltd 2016 Version 2.7 Page 36 of 101

none

Return Parameters:

type description

uint32 High 32-bits of the 40-bit received timestamp.

Notes:

This function can be called after the frame received event, DWT_INT_RFCG (see dwt_isr() function).

5.27 dwt_readsystime

void dwt_readsystime(uint8* timestamp);

This function returns the system time. The function returns a 40-bit value.

Parameters:

type name description

uint8* timestamp The pointer to the buffer into which the timestamp value is read.

(The buffer needs to be at least 5 bytes long.) The low order byte

is the first element. The low order 9 bits will always be 0, as the

system timer runs in units of approximately 8 ns. (more precisely

512/(499.2e6*128) seconds or 63.8976GHz).

Return Parameters:

none

Notes:

This function can be called to read the DW1000 system time.

5.28 dwt_readsystimestamphi32

uint32 dwt_readsystimestamphi32(void);

This function returns the high 32-bits of the 40-bit system time.

Parameters:

none

Return Parameters:

type description

uint32 High 32-bits of the 40-bit system timestamp.

Notes:

This function can be called to read the DW1000 system time.

DW1000 Device Driver API Guide

© Decawave Ltd 2016 Version 2.7 Page 37 of 101

5.29 dwt_forcetrxoff

void dwt_forcetrxoff(void);

This function may be called at any time to disable the active transmitter or the active receiver and

put the DW1000 back into idle mode (transceiver off).

Parameters:

none

Return Parameters:

none

Notes:

The dwt_forcetrxoff() function can be called any time and it will disable the active transmitter or

receiver and put the device in IDLE mode. It issues a transceiver off command to the DW1000 IC and

also clears status register event flags, so that there should be no outstanding/pending events for

processing.

5.30 dwt_syncrxbufptrs

void dwt_syncrxbufptrs(void);

This function synchronizes RX buffer pointers. This is needed to make sure that the host and

DW1000 buffer pointers are aligned before starting RX.

Parameters:

none

Return Parameters:

none

Notes:

The function is called as part of dwt_rxenable() and dwt_forcetrxoff(), to make sure the buffers are

synchronized as the receiver is switched off or switched on. For more information see

dwt_setdblrxbuffmode() function below.

5.31 dwt_rxenable

int dwt_rxenable(int mode);

This function turns on the receiver to wait for a receive frame. The mode parameter is a bit field

that allows for selection of immediate or delayed RX operation. In delayed RX the receiver is not

turned on until as specific time, set via dwt_setdelayedtrxtime(). This facility is useful to save power

in the case when the timing of a response is known. The mode parameter also controls whether the

receiver is enabled in case of error, i.e. the delayed RX being late, see notes below for details.

Parameters:

DW1000 Device Driver API Guide

© Decawave Ltd 2016 Version 2.7 Page 38 of 101

type name description

int mode

This is a bit field value interpreted as follows:

DWT_START_RX_IMMEDIATE / DWT_START_RX_DELAYED (bit 0)

- If this is clear, the receiver is activated immediately, otherwise

the receiver will be turned on when the time reaches the start

time set through the dwt_setdelayedtrxtime() function.

DWT_IDLE_ON_DLY_ERR (bit 1)

- This bit applies only when a delayed start is determined to be

late (see notes below). If this is set the receiver will not be

enabled in case of a late error, i.e. the DW1000 will be left in

IDLE mode. Otherwise, the receiver will be enabled.

DWT_NO_SYNC_PTRS (bit 2)

- This bit is used to control whether or not the double-buffering

pointers are realigned or not. In the case of double-buffering

for the initial enable we want to synchronise the pointers, but

during the double-buffering IRQ handling we do not want to do

this, as we re-enable the receiver, since we have not yet read

the data, (in this case the toggle of the pointers in done

separately when data reading is completed). When the caller

knows that double buffering is not being used this bit can be

set to save some time by suppressing the alignment of host and

IC double-buffer pointers.

Other bits are reserved

Return Parameters:

type description

int Return value can be either DWT_SUCCESS = 0 or DWT_ERROR = -1.

Notes:

This function can be called any time to enable the receiver. The device should be initialised and have

its RF configuration set.

In performing a delayed RX, the host microprocessor can be late in invoking the dwt_rxenable()

function, (i.e. the DW1000’s system clock has passed the starttime specified in the call to the

dwt_setdelayedtrxtime() function). The DW1000 has a status flag warning when the specified start

time is more than a half period (of the system clock) away. If this is the case, since the clock has a

period of over 17 seconds, it is assumed that such a long RX delay is not needed, and the delayed RX is

cancelled. The receiver is then either immediately enabled or left off depending on whether

DWT_IDLE_ON_DLY_ERR was set in the supplied “mode” parameter, and error flag is returned

indicating that the RX on was late. It is up to the application to take whatever remedial action is

needed in the case of this late error.

DW1000 Device Driver API Guide

© Decawave Ltd 2016 Version 2.7 Page 39 of 101

5.32 dwt_setsniffmode

void dwt_setsniffmode(int enable, uint8 timeOn, uint8 timeOff);

When the receiver is enabled, it begins looking for preamble sequence symbols, and by default, in this

preamble-hunt mode the receiver is continuously active. This dwt_setsniffmode() function allows the

configuration of a lower power preamble-hunt mode. In SNIFF mode the receiver (RF and digital) is not on all

the time, but rather is sequenced on and off with a specified duty-cycle. Using SNIFF mode causes a reduction

in RX sensitivity depending on the ratio and durations of the on and off periods. See “Low-Power SNIFF mode”

chapter in the DW1000 User Manual [2] for more details.

Parameters:

type name description

int enable
1 to activate SNIFF mode, 0 to deactivate it and go back to the

normal higher-powered reception mode.

uint8 timeOn

The receiver ON time in PACs (as per the rxPAC parameter in the

dwt_config_t structure parameter to the dwt_configure() API

function call). The DW1000 automatically adds 1 to the value

configured. The minimum value for correct operation is 1, giving

an on time of 2 PACs. The maximum value is 15.

uint8 timeOff
The receiver OFF time, expressed in multiples of 128/125 µs (~1

µs).

Return Parameters:

none

Notes:

This function can be called as part of device receiver configuration.

By default (where this API is not invoked) the DW1000 will operate its receiver in normal reception

mode. If this API is used to enable SNIFF mode this will be maintained until a reset or it is disabled or

re-configured by another call to this dwt_setsniffmode() function. The SNIFF mode setting is not

affected by the dwt_configure() function.

5.33 dwt_setdblrxbuffmode

void dwt_setdblrxbuffmode (int enable);

This function enables double buffered receive mode.

Parameters:

type name description

int enable 1 to enable, 0 to disable the double buffer RX feature.

Return Parameters:

DW1000 Device Driver API Guide

© Decawave Ltd 2016 Version 2.7 Page 40 of 101

none

Notes:

The dwt_setdblrxbuffmode() function is used to configure the receiver in double buffer mode. This

should not be done when the receiver is enabled. It should be selected in idle mode before the

dwt_rxenable() function is called.

As automatic re-enabling is not supported by this API, it is required to manually re-enable the receiver

between two frame receptions. To make the best possible use of double buffering, this can be done

as soon as entering the RX callback, before reading the data from the received frame. This can be

done using the dwt_rxenable() API with DWT_NO_SYNC_PTRS bit set in “mode” parameter.

Once the data for the received frame is read, the host side buffer pointer must be toggled to be ready

to read the next received frame. This is done in the dwt_isr() which handles the DW1000 IRQ.

The reader is referred to “Double Receive Buffer” chapter in the DW1000 User Manual [2] for more

details.

5.34 dwt_setrxtimeout

void dwt_setrxtimeout (uint16 time) ;

The dwt_setrxtimeout() function sets the receiver to timeout (and disable) when no frame is

received within the specified time. This function should be called before the dwt_rxenable()

function is called to turn on the receiver. The time parameter used here is in 1.0256 us (512/499.2

MHz) units. The maximum RX timeout is ~ 65 ms.

Parameters:

type name description

uint16 time Timeout time in micro seconds (1.0256 us). If this is 0, the timeout

will be disabled.

Return Parameters:

none

Notes:

If RX timeout is being employed then this function should be called before dwt_rxenable() to

configure the frame wait timeout time, and enable the frame wait timeout.

5.35 dwt_setpreambledetecttimeout

void dwt_setpreambledetecttimeout (uint16 time);

This dwt_setpreambledetecttimeout() API function sets the receiver to timeout (and disable) when

no preamble is received within the specified time. This function should be called before the

dwt_rxenable() function is called to turn on the receiver. The time parameter units are PACs (as per

the rxPAC parameter in the dwt_config_t structure parameter to the dwt_configure() API function

call).

Parameters:

DW1000 Device Driver API Guide

© Decawave Ltd 2016 Version 2.7 Page 41 of 101

type name description

uint16 time This is the preamble detection timeout duration. If preamble is not

detected within this time, counted from the time the receiver is

enabled, the receiver will be turned off.

The time here is specified in multiples of PAC size, (as per the rxPAC

parameter in the dwt_config_t structure parameter to the

dwt_configure() API function call). The DW1000 automatically

adds 1 to the configured value. A value of 0 disables the timer and

timeout.

Return Parameters:

none

Notes:

If preamble detection timeout is being employed then this function should be called before

dwt_rxenable() is called.

5.36 dwt_configurefor64plen

void dwt_configurefor64plen (int prf) ;

This dwt_configurefor64plen() API function, together with dwt_loadopsettabfromotp() configures

the receiver for best performance when 64 preamble length is used in the transmitting device.

Parameters:

type name description

int Prf Either DWT_PRF_16M or DWT_PRF_64M.

Return Parameters:

none

Notes:

5.37 dwt_loadopsettabfromotp

void dwt_loadopsettabfromotp (uint8 ops_sel);

The dwt_loadopsettabfromotp() function selects which Operational Parameter Set table to load from

OTP memory. The DW1000 receiver has the capability of operating with specific parameter sets that

relate to how it acquires the preamble signal and decodes the data. Three distinct operating

parameter sets are defined within the IC for selection by the host system designer depending on

system characteristics. Table 9 below lists and defines these operating parameter sets indicating their

recommended usages.

Parameters:

DW1000 Device Driver API Guide

© Decawave Ltd 2016 Version 2.7 Page 42 of 101

type name description

uint8 ops_sel This specifies the table to use, see Table 9 below.

Return Parameters:

none

Table 9: Values for dwt_loadopsettabfromotp() ops_sel parameter

Mode
Mask
Value

Description

DWT_OPSET_64LEN 0x0

This operating parameter set is designed to give good
performance for very short preambles, i.e. the length 64
preamble. However, this performance optimization comes at
a cost, which is that it cannot tolerate large crystal offsets. In
order to use this operating parameter set the total clock
offset from transmitter to receiver needs to be kept below
±15 ppm. See also dwt_configurefor64plen() API function.

DWT_OPSET_TIGHT 0x1

This operating parameter set maximises the operating range
of the system. However, this performance optimization again
comes at a cost, which is that the total crystal offset must be
kept very tight, at or below about ±1 ppm. This might be done
for example by using very high quality 0.5 ppm TCXO in both
the transmitter and the receiver.

DWT_OPSET_DEFLT 0x2

This is the default operating parameter set. This parameter
set is designed to work at all data rates and can tolerate
crystal offsets of the order of ±40 ppm (e.g. 20ppm XTAL in
transmitter and receiver) between the transmitter and
receiver. It is however not optimum for the very short
preamble.

Notes:

NB: the SPI frequency has to be set to < 3 MHz before a call to this function.

5.38 dwt_configuresleepcnt

void dwt_configuresleepcnt (uint16 sleepcnt);

The dwt_configuresleepcnt() function configures the sleep counter to a new value.

Parameters:

type name description

uint16 sleepcnt This is the sleep count value to set. The high 16-bits of 28-bit

counter. See note below for details of units and code example for

configuration detail.

Return Parameters:

none

DW1000 Device Driver API Guide

© Decawave Ltd 2016 Version 2.7 Page 43 of 101

Notes:

NB: the SPI frequency has to be set to < 3 MHz before a call to this function.

The units of the sleepcnt parameter depend on the oscillating frequency of the IC’s internal L-C

oscillator, which is between approximately 7,000 and 13,000 Hz depending on process variations

within the IC and on temperature and voltage. This frequency can be measured using the

dwt_calibratesleepcnt() function so that sleep times can be more accurately set.

The sleepcnt is actually setting the upper 16 bits of a 28-bit counter, i.e. the low order bit is equal to

4096 counts. So, for example, if the L-C oscillator frequency is 9500 Hz then programming the

sleepcnt with a value of 24 would yield a sleep time of 24 × 4096 ÷ 9500, which is approximately 10.35

seconds.

Example code:

This example shows how to calibrate the low-power oscillator and set the sleep time to 10 seconds.

Double t;

uint32 sleep_time = 0;

uint16 lp_osc_cal = 0;

uint16 sleepTime16;

// MUST SET SPI <= 3 MHz for this calibration activity.

Setspibitrate(SPI_3MHz); // target platform function to set SPI rate to 3

// MHz

// Measure low power oscillator frequency

lp_osc_cal = dwt_calibratesleepcnt();

// calibrate low power oscillator

// the lp_osc_cal value is number of XTAL/2 cycles in one cycle of LP OSC

// to convert into seconds (38.4 MHz/2 = 19.2 MHz (XTAL/2) => 1/19.2 MHz ns)

// so to get a sleep time of 10s we need a value of:

// 10 / period and then >> 12 as the register holds upper 16-bits of 28-bit

// counter

t = ((double) 10.0 / ((double) lp_osc_cal/19.2e6));

sleep_time = (int) t;

sleepTime16 = sleep_time >> 12;

dwt_configuresleepcnt(sleepTime16); //configure sleep time

// CAN restore/increase SPI clock up to its maximum after the calibration

// activity.

Setspibitrate(SPI_20MHz); // target platform function to set

// SPI rate to 20 MHz

5.39 dwt_calibratesleepcnt

uint16 dwt_calibratesleepcnt (void);

The dwt_calibratesleepcnt() function calibrates the low-power oscillator. It returns the number of

XTAL/2 cycles per one low-power oscillator cycle.

Parameters:

none

Return Parameters:

DW1000 Device Driver API Guide

© Decawave Ltd 2016 Version 2.7 Page 44 of 101

type description

uint16 This is number of XTAL/2 cycles per one low-power oscillator cycle.

Notes:

NB: the SPI frequency has to be set to < 3 MHz before a call to this function.

The DW1000’s internal L-C oscillator has an oscillating frequency which is between approximately

7,000 and 13,000 Hz depending on process variations within the IC and on temperature and voltage.

To do more precise setting of sleep times its calibration is necessary. See also example code given

under the dwt_configuresleepcnt() function.

5.40 dwt_configuresleep

void dwt_configuresleep(uint16 mode, uint8 wake);

The dwt_configuresleep() function may be called to configure the activity of DW1000 DEEPSLEEP or

SLEEP modes. Note TX and RX configurations are maintained in DEEPSLEEP and SLEEP modes so that

upon "waking up" there is no need to reconfigure the devices before initiating a TX or RX, although

as the TX data buffer is not maintained the data for transmission will need to be written before

initiating transmission.

Parameters:

Type name description

uint16 mode A bit mask which configures which configures the SLEEP parameters,

see Table 10.

uint8 wake A bit mask that configures the wakeup event.

Return Parameters:

none

Notes:

This function is called to configure the DW1000 sleep and on wake parameters.

Table 10: Bitmask values for dwt_configuresleep() mode bit mask

Event Bit mask Description

DWT_PRESRV_SLEEP 0x0100
Preserves sleep. When this is set to these sleep controls are not
cleared upon wakeup, so that the DW1000 can be returned to
sleep without needing to call configuresleep again.

DWT_LOADOPSET 0x0080

On Wake-up load the receiver operating parameter When the
bit is 0 the receiver operating parameter set reverts to its
power-on-reset value (the default operating parameter set)
when the DW1000 wakes from SLEEP or DEEP-SLEEP.

DWT_CONFIG 0x0040 Restore saved configurations.

DW1000 Device Driver API Guide

© Decawave Ltd 2016 Version 2.7 Page 45 of 101

Event Bit mask Description

DWT_LOADEUI 0x0008
On Wake-up load the EUI value from OTP memory into register
0x1. The 64-bit EUI value will be stored in register 0x1 when the
DW1000 wakes from DEEPSLEEP or SLEEP states.

DWT_GOTORX 0x0002
On Wake-up turn on the receiver. With this bit it is possible to
make the IC transition into RX automatically as part of IC wake
up.

DWT_TANDV 0x0001

On Wake-up run the (temperature and voltage) ADC. Setting

this bit will cause the automatic initiation of temperature and

input battery voltage measurements when the DW1000 wakes

from DEEPSLEEP or SLEEP states. The sampled temperature

value may be accessed using the dwt_readwakeuptemp()

function.

Table 11: Bitmask values for dwt_configuresleep() wake bit mask

Event Bit mask Description

DWT_WAKE_SLPCNT 0x8

Wake up after sleep count expires. By default this configuration
is set enabling the sleep counter as a wake-up signal. Setting this
configuration bit to 0 will mean that the sleep counter cannot
awaken the DW1000 form SLEEP.

DWT_WAKE_CS 0x4 Wakeup on chip select, SPICSn, line.

DWT_WAKE_WK 0x2 Wake up on WAKEUP line.

DWT_SLP_EN 0x1
This is the sleep enable configuration bit. This needs to be set to
enable DW1000 SLEEP/DEEPSLEEP functionality.

The DEEPSLEEP state is the lowest power state except for the OFF state. In DEEPSLEEP all internal

clocks and LDO are off and the IC consumes approximately 100 nA. To wake the DW1000 from

DEEPSLEEP an external pin needs to be activated for the “power-up duration” approximately 300 to

500 μs .This can be either be the SPICSn line pulled low or the WAKEUP line driven high. The duration

quoted here is dependent on the frequency of the low power oscillator (enabled as the DW1000

comes out of DEEPSLEEP) which will vary between individual DW1000 IC and will also vary with

changes of battery voltage and different temperatures. To ensure the DW1000 reliably wakes up it is

recommended to either apply the wakeup signal until the 500 μs has passed, or to use the SLP2INIT

event status bit (in Register file: 0x0F – System Event Status Register) to drive the IRQ interrupt

output line high to confirm the wake-up. Once the DW1000 has detected a “wake up” it progresses

into the WAKEUP state. While in DEEPSLEEP power should not be applied to GPIO, SPICLK or SPIMISO

pins as this will cause an increase in leakage current.

There are three mechanisms to awaken the DW1000:

a) By driving the WAKEUP pin (pin 23) of the DW1000 high for a period > 500 µs (as per DW1000

Data Sheet [1])

b) Driving SPICSn low for a period > 500 µs. This can also be achieved by an SPI read (of register 0,

offset 0) of sufficient length

DW1000 Device Driver API Guide

© Decawave Ltd 2016 Version 2.7 Page 46 of 101

c) If the DW1000 is sleeping using its own internal sleep counter it will be awoken when the timer

expires. This is configured by setting the wake parameter to 0x8 (+ 0x1 – to enable sleep).

Example code:

This example shows how to configure the device to enter DEEPSLEEP mode after some event e.g.

frame transmission. The mode parameter into the dwt_configuresleep() function has value 0x0140

which is a combination of parameters to load IC configurations, and preserve the sleep setting. The

wake parameter value, 5, enables the sleeping with SPICSn as the wakeup signal.

dwt_configuresleep(0x0140, 0x5); //configure sleep and wake parameters

// then ... later... after some event we can instruct the IC to go into

// DEEPSLEEP mode

dwt_entersleep(); //go to sleep

/// then ... later ... when we want to wake up the device

dwt_spicswakeup(buffer, len);

// buffer is declared locally and needs to be of length (len) which must be

// sufficiently long keep the SPI CSn pin low for at least 500us this

// depends on SPI speed – see also dwt_spicswakeup() function

5.41 dwt_entersleep

void dwt_entersleep(void);

This function is called to put the device into DEEPSLEEP or SLEEP mode.

NOTE: dwt_configuresleep() needs to be called before calling this function to configure the sleep and

on wake parameters.

(Before entering DEEPSLEEP, the device should be programmed for TX or RX, then upon “waking up"

the TX/RX settings will be preserved and the device can immediately perform the desired action

TX/RX see dwt_configuresleep()).

Parameters:

none

Return Parameters:

none

Notes:

This function is called to enable (put the device into) DEEPSLEEP mode. The dwt_configuresleep()

should be called first to configure the sleep/wake parameters. (See code example on the

dwt_configuresleep() function).

5.42 dwt_entersleepaftertx

void dwt_entersleepaftertx (int enable);

The dwt_entersleepaftertx() function configures the “enter sleep after transmission completes” bit.

If this is set, the device will automatically go to DEEPSLEEP/SLEEP mode after a TX event.

DW1000 Device Driver API Guide

© Decawave Ltd 2016 Version 2.7 Page 47 of 101

Parameters:

type name description

int enable If set the “enter DEEPSLEEP/SLEEP after TX” bit will be set, else it will

be cleared.

Return Parameters:

none

Notes:

When this mode of operation is enabled the DW1000 will automatically transition into SLEEP or

DEEPSLEEP mode (depending on the sleep mode configuration set in dwt_configuresleep()) after

transmission of a frame has completed so long as there are no unmasked interrupts pending. See

dwt_setinterrupt() for details of controlling the masking of interrupts.

To be effective dwt_entersleepaftertx() function should be called before dw_starttx() function and

then upon TX event completion the device will enter sleep mode.

Example code:

This example shows how to configure the device to enter DEEP_SLEEP mode after frame transmission.

dwt_configuresleep(0x0140, 0x5); //configure the on-wake parameters

//(upload the IC config settings)

dwt_entersleepaftertx(1); //configure the auto go to sleep

 //after TX

dwt_setinterrupt(DWT_INT_TFRS, 0); //disable TX interrupt

// won’t be able to enter sleep if any other unmasked events are pending

dwt_writetxdata(frameLength,DataBufferPtr,0); // write the frame data at

//offset 0

dwt_writetxfctrl(frameLength,0,0) // set the frame control register

dwt_starttx(DWT_START_TX_IMMEDIATE); // send the frame immediately

// when TX completes the DW1000 will go to sleep....then…..later...when we

// want to wake up the device

dwt_spicswakeup(buffer, len);

// buffer is declared locally and needs to be of length (len) which must be

// sufficiently long keep the SPI CSn pin low for at least 500us this

// depends on SPI speed – see also dwt_spicswakeup() function

5.43 dwt_spicswakeup

int dwt_spicswakeup (uint8 *buff, uint16 length);

The dwt_spicswakeup() function uses an SPI read to wake up the DW1000 from SLEEP or DEEPSLEEP.

Parameters:

DW1000 Device Driver API Guide

© Decawave Ltd 2016 Version 2.7 Page 48 of 101

type name description

uint8* buff This is the pointer to a buffer where the data from SPI read will be

read into.

uint16 length This is the length of the input buffer.

Return Parameters:

type description

int Return value can be either DWT_SUCCESS = 0 or DWT_ERROR = -1.

Notes:

When the DW1000 is in DEEPSLEEP or SLEEP mode, this function can be used to wake it up, assuming

SPICSn has been configured as a wakeup signal in the dwt_configuresleep()) call. This is done using an

SPI read. The duration of the SPI read, keeping SPICSn low, has to be long enough to provide the low

for a period > 500 µs.

See example code below.

Example code:

This example shows how to configure the device to enter DEEPSLEEP mode after some event e.g.

frame transmission.

dwt_configuresleep(0x0140, 0x5); //configure sleep and wake parameters

// then ... later....after some event we can instruct the IC to go into

// DEEPSLEEP mode

dwt_entersleep(); //go to sleep

// then ... later ... when we want to wake up the device

dwt_spicswakeup(buffer, len);

// buffer is declared locally and needs to be of length (len) which must be

// sufficient to keep the SPI CSn pin low for at least 500us This depends

// on SPI speed

5.44 dwt_setlowpowerlistening

void dwt_setlowpowerlistening (int enable);

This function is used to enable/disable and configure low-power listening mode.

Low-power listening is a feature whereby the DW1000 is predominantly in the SLEEP state but wakes

periodically for a very short time to sample the air for a preamble sequence. The listening phase is

actually two reception phases separated by a very short time ("short sleep"). See "Low-Power

Listening" section in [2] for more details.

Parameters:

DW1000 Device Driver API Guide

© Decawave Ltd 2016 Version 2.7 Page 49 of 101

type name Description

int enable 1 to activate set low-power listening, 0 to deactivate it.

Return Parameters:

none

Notes:

In addition, the following functions have to be called to totally configure low-power listening:

- dwt_configuresleep() to configure long sleep phase. "mode" parameter should at least have

DWT_PRESRV_SLEEP, DWT_CONFIG and DWT_RX_EN set and "wake" parameter should at

least have DWT_WAKE_SLPCNT and DWT_SLP_EN set.

- dwt_calibratesleepcnt() and dwt_configuresleepcnt() to define the "long sleep" phase

duration.

- dwt_setsnoozetime() to define the "short sleep" phase duration.

- dwt_setpreambledetecttimeout() to define the reception phases duration.

- dwt_setinterrupt() to activate RX good frame interrupt (DWT_INT_RFCG) only.

Once all this is done, low-power listening mode can be triggered either by putting the DW1000 to

sleep (using dwt_entersleep()) or by activating reception (using dwt_rxenable()).

5.45 dwt_setsnoozetime

void dwt_setsnoozetime (uint8 snooze_time);

This function is used to set the duration of the "short sleep" phase when in low-power listening

mode.

Parameters:

type name Description

uint8 snooze_time

"short sleep" phase duration, expressed in multiples of 512/19.2

µs (~26.7 µs). The DW1000 adds 1 to the configured value. The

minimum value that can be set is 1 (i.e. a snooze time of

2*512/19.2 µs (~53 µs)).

Return Parameters:

none

Notes:

 none

5.46 dwt_setcallbacks

void dwt_setcallbacks(dwt_cb_ t cbTxDone, dwt_cb_ t cbRxOk, dwt_cb_ t cbRxTo, dwt_cb_ t
cbRxErr));

DW1000 Device Driver API Guide

© Decawave Ltd 2016 Version 2.7 Page 50 of 101

This function is used to configure the TX/RX callback function pointers. These callback functions will

be called when TX or RX events happen and the dwt_isr() is called to handle them (See dwt_isr()

description below for more details about the events and associated callbacks).

Parameters:

type name Description

dwt_cb_ t cbTxDone
Function pointer for the cbTxDone function. See type description

below.

dwt_cb _t cbRxOk
Function pointer for the cbRxOk function. See type description

below.

dwt_cb _t cbRxTo
Function pointer for the cbRxTo function. See type description

below

dwt_cb _t cbRxErr
Function pointer for the cbRxErr function. See type description

below

// Call-back type for all events

typedef void (*dwt_cb_t)(const dwt_cb_data_t *);

// TX/RX call-back data

typedef struct

{

 uint32 status; //initial value of register as ISR is entered

 uint16 datalength; //length of frame

uint8 fctrl[2]; //frame control bytes

 uint8 rx_flags; //RX frame flags

}dwt_cb_data_t;

Return Parameters:

none

Notes:

This function is used to set up the TX and RX events call-back functions.

Fields Description of fields within the dwt_cb_data_t structure

status The status parameter holds the initial value of the status (0xF) register as

read on entry into the ISR.

datalength The datalength parameter specifies the length of the received frame.

fctrl[2] The fctrl is the two byte array holding the two frame control bytes.

rx_flags The rx_flags parameter is a bit field value valid only for received frames. It is

interpreted as follows:

- Bit 0: 1 if the ranging bit was set for this frame, 0 otherwise.

- Bit 1-7: Reserved.

DW1000 Device Driver API Guide

© Decawave Ltd 2016 Version 2.7 Page 51 of 101

For more detailed information on interrupt events and especially for details on which status events

trigger each one of the different callbacks, see dwt_isr() function description below.

5.47 dwt_setinterrupt

void dwt_setinterrupt(uint32 bitmask, uint8 operation);

This function sets the events which will generate an interrupt. The bit mask parameter may be used

to enable or disable single events or multiple events at the same time. Table 12 shows the main

events that are typically configured as interrupts:

Parameters:

type name description

uint32 bitmask
This specifies the events being acted on by this API. See Table 12

for the relevant events.

uint8 operation The operation parameter selects the operation being applied to the

selected event bits. This can be:

0 = clear only selected bits (other bits settings unchanged).

1 = set only selected bits (other bits settings unchanged).

2 = set only selected bits, force other bits to clear.

Return Parameters:

none

Notes:

This function is called to enable/set events which are going to generate interrupts.

For the transmitter it is sufficient to enable the SY_STAT_TFRS event which will trigger when a frame

has been sent, and for the receiver it is sufficient to enable the good frame reception event and also

any error events which will disable the receiver.

Table 12: Bitmask values for dwt_setinterrupt() interrupt mask enabling/disabling

Event Bit mask Description

DWT_INT_TFRS 0x00000080
Transmit Frame Sent: This is set when the transmitter has
completed the sending of a frame.

DWT_INT_RPHE 0x00001000
Receiver PHY Header Error: Reception completed, Frame
Error

DWT_INT_RFCG 0x00004000
Receiver FCS Good: The CRC check has matched the
transmitted CRC, frame should be good

DWT_INT_RFCE 0x00008000
Receiver FCS Error: The CRC check has not matched the
transmitted CRC, frame has some error

DW1000 Device Driver API Guide

© Decawave Ltd 2016 Version 2.7 Page 52 of 101

Event Bit mask Description

DWT_INT_RFSL 0x00010000
Receiver Frame Sync Loss: The RX lost signal before frame
was received, indicates excessive Reed Solomon decoder
errors

DWT_INT_RFTO 0x00020000
Receiver Frame Wait Timeout: The RX_FWTO time period
expired without a Frame RX.

DWT_INT_SFDT 0x04000000 SFD Timeout

DWT_INT_RXPTO 0x00200000 Preamble detection timeout

DWT_INT_ARFE 0x20000000 ARFE – frame rejection status

5.48 dwt_checkirq

uint8 dwt_checkirq(void);

This API function checks the DW1000 interrupt line status.

Parameters:

 none

Return Parameters:

type Description

uint8
1 if the DW1000 interrupt line is active (IRQS bit in STATUS register is set), 0

otherwise.

Notes:

This function is typically intended to be used in a PC based system using (Cheetah or ARM)

USB to SPI converter, where there can be no interrupts. In this case we can operate in a

polled mode of operation by checking this function periodically and calling dwt_isr() if it

returns 1.

5.49 dwt_isr

void dwt_isr(void);

This function processes device events, (e.g. frame reception, transmission). It is intended that this

function be called as a result of an interrupt from the DW1000 – the mechanism by which this is

achieved is target specific. Where interrupts are not supported this function can be called from a

simple runtime loop to poll the DW1000 status register and take the appropriate action, but this

approach is not as efficient and may result in reduced performance depending on system

characteristics.

The dwt_isr() function makes use of call-back functions in the application to indicate that received

data is available to the upper layers (application) or to indicate when frame transmission has

completed. The dwt_setcallbacks() API function is used to configure the call back functions.

DW1000 Device Driver API Guide

© Decawave Ltd 2016 Version 2.7 Page 53 of 101

The dwt_isr() function reads the DW1000 status register and recognises the following events:

Table 13: List of events handled by the dwt_isr() function and signalled in call-backs

Event Corresponding
DW1000 status

register event flags

Comments

Reception of a good
frame

(cbRxOk callback)

RXFCG This means that a frame with a good CRC has
been received and that the RX data and the
frame receive time stamp can be read.

Frame length and frame control information are
reported through “datalength” and “fctrl” fields
of the dwt_cb_data_t structure.

The value of the Ranging bit (from the PHY
header), is reported through RNG bit in the
rx_flags field of the dwt_cb_data_t structure.

When automatic acknowledgement is enabled
(via the dwt_enableautoack() API function), if a
frame is received with the ACK request bit set
then the AAT bit will be set in the “status” field
of the dwt_cb_data_t structure, indicating that
an ACK is being sent (or has been sent).

Reception timeout

(cbRxTo callback)

RXRFTO/RXPTO These events indicate that a timeout occurred
while waiting for an incoming frame.

If needed, the “status” field of the
dwt_cb_data_t structure can be examined to
distinguish between these events.

Reception error

(cbRxErr callback)

RXRXPHE/RXSFDTO/

RXRFSL/RXRFCE/

LDEERR/AFFREJ

This means that an error event occurred while
receiving a frame.

If needed, the “status” field of dwt_cb_data_t
structure can be examined to determine which
DW1000 event caused the interrupt.

Transmission of a
frame completed

(cbTxDone callback)

TXFRS This means that the transmission of a frame is
complete and that the transmit time stamp can
be read.

When an event is recognised and processed the status register bit is cleared to clear the event

interrupt. Figure 4 below shows the dwt_isr() function flow diagram.

Parameters:

none

Return Parameters:

none

Notes:

The dwt_isr() function should be called from the microprocessor’s interrupt handler that is used to

process the DW1000 interrupt.

It is recommended to read the DW1000 User Manual [2], especially chapters 3, 4, and 5 to become

familiar with DW1000 events and their operation.

DW1000 Device Driver API Guide

© Decawave Ltd 2016 Version 2.7 Page 54 of 101

Also if the microprocessor is not fast enough and two events are set in the status register, the order in

which they are processed is as shown in Figure 4 below. This may not be the order in which they

were triggered.

Automatic RX re-enabling support in both single buffering and double buffering mode has been

removed in DW1000 driver from version 4.0.0, due to some IC issues that made its management too

complex and inefficient in most of the useful cases.

Figure 4: Interrupt handling

5.50 dwt_lowpowerlistenisr

void dwt_lowpowerlistenisr(void);

Read state of DW1000 IRQ line input to microprocessor

to check whether a DW1000 IRQ is pending

Call dwt_isr() the DW1000 device

driver’s interrupt handler routine

Read the status (0xF) register to check

which event triggered interrupt

DWT_INT_RFCG

bit set ?

NO

YES

NO

YES

NO

YES

NO

Clear the event and call RX OK call-back

Clear the event and call RX ERR call-back
YES

DWT_INT_RFTO or

DWT_INT_RXPTO

 bits set ?

Clear the event and call RX TO call-back

DWT_INT_TFRS

 bit set ?
Clear the event and call TX DONE call-back

Any RX error

 bits set ?

DW1000 Device Driver API Guide

© Decawave Ltd 2016 Version 2.7 Page 55 of 101

This function is the ISR intended to be used when low-power listening mode is activated. The

differences compared to the normal dwt_isr() are the following:

- RX frame good (RXFCG) event is the only event handled.

- The very first thing this ISR does is to deactivate low-power listening mode. This is done

before clearing the interrupt. This is needed to prevent the DW1000 from going back to sleep

when the interrupted is cleared.

- This ISR only supports single buffering mode, i.e. there is no toggling of the RX buffer pointer

after the call of the RX OK call-back.

Parameters:

 none

Return Parameters:

none

Notes:

none

5.51 dwt_setpanid

void dwt_setpanid(uint16 panID) ;

This function sets the PAN ID value. These are typically assigned by the PAN coordinator when a

node joins a network. This value is only used by the DW1000 for frame filtering. See the

dwt_enableframefilter() function.

Parameters:

type name description

uint16 panID This is the PAN ID.

Return Parameters:

none

Notes:

This function can be called to set device’s PANID for frame filtering use, it does not need to be set if

frame filtering is not being used. Insertion of PAN ID in the TX frames is the responsibility of the

upper layers calling the dwt_writetxdata() function.

5.52 dwt_setaddress16

void dwt_setaddress16(uint16 shortAddress) ;

This function sets the 16-bit short address values. These are typically assigned by the PAN

coordinator when a node joins a network. This value is only used by the DW1000 for frame filtering.

See the dwt_enableframefilter() function.

Parameters:

DW1000 Device Driver API Guide

© Decawave Ltd 2016 Version 2.7 Page 56 of 101

type name description

uint16 shortAddress This is the 16-bit address to set.

Return Parameters:

none

Notes:

This function is called to set device’s short (16-bit) address, it does not need to be set if frame filtering

is not being used. Insertion of short (16-bit) address, in the TX frames is the responsibility of the upper

layers calling the dwt_writetxdata() function.

5.53 dwt_seteui

void dwt_seteui (uint8* eui) ;

The dwt_seteui() function sets the 64-bit address.

Parameters:

type name description

uint8* eui This is a pointer to the 64-bit address to set, arranged as 8

unsigned bytes. The low order byte comes first.

Return Parameters:

none

Notes:

This function may be called to set a long (64-bit) address into the DW1000 internal register used for

address filtering. If address filtering is not being used then this register does not need to be set.

It is possible for a 64-bit address to be programmed into the DW1000’s one-time programmable

memory (OTP memory) during customers’ manufacturing processes and automatically loaded into

this register on power-on reset or wake-up from sleep. dwt_seteui() may be used subsequently to

change the value automatically loaded.

5.54 dwt_geteui

void dwt_geteui (uint8* eui) ;

The dwt_geteui() function gets the programmed 64-bit EUI value from the DW1000.

Parameters:

type name description

uint8* eui This is a pointer to the 64-bit address to read, arranged as 8

unsigned bytes. The low order byte comes first.

Return Parameters:

DW1000 Device Driver API Guide

© Decawave Ltd 2016 Version 2.7 Page 57 of 101

none

Notes:

This function may be called to get programmed the DW1000 EUI value. The value will be

0xFFFFFFFF00000000 if it has not been programmed into OTP memory or has not been set by a call to

dwt_seteui() function.

It is possible for a 64-bit address to be programmed into the DW1000’s one-time programmable

memory (OTP memory) during customers’ manufacturing processes and automatically loaded into

this register on power-on reset or wake-up from sleep. dwt_seteui() may be used subsequently to

change the value automatically loaded.

5.55 dwt_enableframefilter

void dwt_enableframefilter(uint16 mask) ;

This dwt_enableframefilter() function enables frame filtering according to the mask parameter.

Parameters:

type name description

uint16 mask The bit mask which enables particular frame filter options, see

Table 14.

Return Parameters:

none

Notes:

This function is used to enable frame filtering, the device address and pan ID should be configured

beforehand.

Table 14: Bitmask values for frame filtering enabling/disabling

Definition Value Description

DWT_FF_NOTYPE_EN 0x000 no frame types allowed – frame filtering will be disabled

DWT_FF_COORD_EN 0x002 behave as coordinator (can receive frames with no
destination address (PAN ID has to match))

DWT_FF_BEACON_EN 0x004 beacon frames allowed

DWT_FF_DATA_EN 0x008 data frames allowed

DWT_FF_ACK_EN 0x010 ACK frames allowed

DWT_FF_MAC_EN 0x020 MAC command frames allowed

DWT_FF_RSVD_EN 0x040 reserved frame types allowed

5.56 dwt_enableautoack

void dwt_enableautoack(uint8 responseDelayTime) ;

DW1000 Device Driver API Guide

© Decawave Ltd 2016 Version 2.7 Page 58 of 101

This function enables automatic ACK to be automatically sent when a frame with ACK request is

received. The ACK frame is sent after a specified responseDelayTime (in preamble symbols, max is

255).

Parameters:

type name description

uint8 responseDelayTime The delay between the ACK request reception and ACK

transmission.

Return Parameters:

none

Notes:

This dwt_enableautoack() function is used to enable the automatic ACK response. It is

recommended that the responseDelayTime is set as low as possible consistent with the ability of the

frame transmitter to turn around and be ready to receive the response. If the host system is using the

RESPONSE_EXP mode (with rxDelayTime in dwt_setrxaftertxdelay() function set to 0) in the

dwt_starttx() function then the responseDelayTime can be set to 3 symbols (3 µs) without loss of

preamble symbols in the receiver awaiting the ACK.

5.57 dwt_setrxaftertxdelay

void dwt_setrxaftertxdelay(uint32 rxDelayTime) ;

This function sets the delay in turning the receiver on after a frame transmission has completed. The

delay, rxDelayTime, is in UWB microseconds (1 UWB microsecond is 512/499.2 microseconds). It is a

20-bit wide field. This should be set before start of frame transmission after which a response is

expected, i.e. before invoking the dwt_starttx() function (above) to initiate the transmission (in

RESPONSE_EXP mode). E.g. transmission of a frame with an ACK request bit set.

Parameters:

type name description

uint32 rxDelayTime The turnaround time, in UWB microseconds, between the TX

completion and the RX enable.

Return Parameters:

none

Notes:

This function is used to set the delay time before automatic receiver enable after a frame

transmission. The smallest value that can be set is 0. If 0 is set the DW1000 will turn the RX on as soon

as possible, which approximately takes 6.2 µs. So if setting a value smaller than 7 µs it will still take 6.2

µs to switch to receive mode.

DW1000 Device Driver API Guide

© Decawave Ltd 2016 Version 2.7 Page 59 of 101

5.58 dwt_readrxdata

void dwt_readrxdata(uint8 *buffer, uint16 len, uint16 bufferOffset);

This function reads a number, len, bytes of rx buffer data, from a given offset, bufferOffset, into the

given buffer, buffer.

Parameters:

type name description

uint8* buffer The pointer to the buffer into which the data will be read.

Uint16 len The length of data to be read (in bytes).

Uint16 bufferOffset The offset at which to start to read the data.

Return Parameters:

none

Notes:

This function should be called on the reception of a good frame to read the received frame data. The

offset might be used to skip parts of the frame that the application is not interested in, or has read

previously.

5.59 dwt_readaccdata

void dwt_readaccdata(uint8 *buffer, uint16 len, uint16 bufferOffset);

This API function reads data from the DW1000 accumulator memory. This data represents the impulse

response of the RF channel. Reading this data is not required in normal operation but it may be useful

for diagnostic purposes. The accumulator contains complex values, a 16-bit real integer and a 16-bit

imaginary integer, for each tap of the accumulator, each of which represents a 1ns sample interval (or

more precisely half a period of the 499.2 MHz fundamental frequency). The span of the accumulator

is one symbol time. This is 992 samples for the nominal 16 MHz mean PRF, or, 1016 samples for the

nominal 64 MHz mean PRF. The dwt_readaccdata() function reads, len, bytes of accumulator buffer

data, from a given offset, bufferOffset, into the given destination buffer, buffer. The output data

starts from buffer[1]. The first byte, buffer[0], is always a dummy byte, so the length read should

always be 1 larger that the length required.

Parameters:

type name description

uint8* buffer The pointer to the destination buffer into which the read

accumulator data will be written.

Uint16 len The length of data to be read (in bytes). Since each complex

value occupies four octets, the value used here should

DW1000 Device Driver API Guide

© Decawave Ltd 2016 Version 2.7 Page 60 of 101

type name description

naturally be a multiple of four. Maximum lengths are 3968

bytes (@ 16 MHz PRF) and 4064 bytes (@ 64 MHz PRF).

Uint16 bufferOffset The offset at which to start to read the data. Offset 0 should

be used when reading the full accumulator. Since each

complex value is 4 octets, the offset should naturally be a

multiple of 4.

Return Parameters:

none

Notes:

dwt_readaccdata() may be called after frame reception to read the accumulator data for diagnostic

purposes. The accumulator is not double buffered so this access must be done before the receiver is

re-enabled since the accumulator data is overwritten during the reception of the next frame. The data

returned in the buffer has the following format (for bufferOffset input of zero):

buffer index Description of elements within buffer
0 Dummy Octet

1 Low 8 bits of real part of accumulator sample index 0

2 High 8 bits of real part of accumulator sample index 0

3 Low 8 bits of imaginary part of accumulator sample index 0

4 High 8 bits of imaginary part of accumulator sample index 0

5 Low 8 bits of real part of accumulator sample index 1

6 High 8 bits of real part of accumulator sample index 1

7 Low 8 bits of imaginary part of accumulator sample index 1

8 High 8 bits of imaginary part of accumulator sample index 1

: :

In examining the CIR it is normal to compute the magnitude of the complex values.

5.60 dwt_readdiagnostics

void dwt_readdiagnostics(dwt_diag_t * diagnostics);

This function reads receiver frame quality diagnostic values.

Parameters:

type name description

dwt_rxdiag_t* diagnostics Pointer to the diagnostics structure which will contain the

read data.

Typedef struct
{
 uint16 maxNoise ; // LDE max value of noise
 uint16 firstPathAmp1 ; // Amplitude at floor(index FP) + 1

uint16 stdNoise ; // Standard deviation of noise
uint16 firstPathAmp2 ; // Amplitude at floor(index FP) + 2
uint16 firstPathAmp3 ; // Amplitude at floor(index FP) + 3

 uint16 maxGrowthCIR ; // Channel Impulse Response max growth CIR

DW1000 Device Driver API Guide

© Decawave Ltd 2016 Version 2.7 Page 61 of 101

uint16 rxPreamCount; // count of preamble symbols accumulated
 uint16 firstPath ; // First path index

}dwt_rxdiag_t ;

Return Parameters:

none

Notes:

This function is used to read the received frame diagnostic data. They can be read after a frame is

received (e.g. after DWT_SIG_RX_OKAY event reported in the RX call-back function called from

dwt_isr()).

Fields Description of fields within the dwt_rxdiag_t structure

maxNoise The maxNoise parameter.

firstPathAmp1

First path amplitude is a 16-bit value reporting the magnitude of the leading

edge signal seen in the accumulator data memory during the LDE algorithm’s

analysis. The amplitude of the sample reported in this firstPathAmp

parameter is the value of the accumulator tap at index given by

floor(firstPath) reported below. This amplitude value can be used in

assessing the quality of the received signal and/or the receive timestamp

produced by the LDE.

firstPathAmp2
Is a 16-bit value reporting the magnitude of signal at index floor (firstPath)

+2.

firstPathAmp3
Is a 16-bit value reporting the magnitude of signal at index floor (firstPath)

+ 3.

stdNoise

The stdNoise parameter is a 16-bit value reporting the standard deviation

of the noise level seen during the LDE algorithm’s analysis of the

accumulator data. This value can be used in assessing the quality of the

received signal and/or the receive timestamp produced by the LDE.

maxGrowthCIR

Channel impulse response max growth is a 16-bit value reporting a growth

factor for the accumulator which is related to the receive signal power. This

value can be used in assessing the quality of the received signal and/or the

receive timestamp produced by the LDE.

rxPreamCount

This reports the number of symbols of preamble accumulated. This may be

used to estimate the length of TX preamble received and also during

diagnostics as an aid to interpreting the accumulator data. It is possible for

this count to be a little larger than the transmitted preamble length, because

of very early detection of preamble and because the accumulation count

may include accumulation that continues through the SFD (until the SFD is

detected).

DW1000 Device Driver API Guide

© Decawave Ltd 2016 Version 2.7 Page 62 of 101

Fields Description of fields within the dwt_rxdiag_t structure

firstPath

First path index is a 16-bit value reporting the position within the

accumulator that the LDE algorithm has determined to be the first path. This

value is set during the LDE algorithm’s analysis of the accumulator data. This

value may be of use during diagnostic graphing of the accumulator data, and

may also be of use in assessing the quality of the received message and/or

the receive timestamp produced by the LDE.

The first path (or leading edge) is a sub-nanosecond quantity. Each tap in

the accumulator corresponds to a sample time, which is roughly 1

nanosecond (or 30 cm in terms of the radio signal’s flight time through air).

To report the position of the leading edge more accurately than this 1-

nanosecond step size, the index value consist of a whole part and a fraction

part. The 16-bits of firstPath are arranged in a fixed point “10.6” style value

where the low 6 bits are the fractional part and the high 10 bits are the

integer part. Essentially this means if the firstPath is read as a whole number,

then it has to be divided by 64 to get the fractional representation.

5.61 dwt_configeventcounters

void dwt_configeventcounters (int enable) ;

This function enables event counters (TX, RX, error counters) in the DW1000.

Parameters:

type name description

int enable
Set to 1 to clear and enable the DW1000’s internal digital

counters. Set to 0 to disable.

Return Parameters:

none

Notes:

This function is used to enable DW1000 counters, which count the number of frames transmitted, and

received, and various types of error events.

5.62 dwt_readeventcounters

void dwt_readeventcounters (dwt_deviceentcnts_t *counters) ;

This function reads the event counters (TX, RX, error counters) in the DW1000.

Parameters:

DW1000 Device Driver API Guide

© Decawave Ltd 2016 Version 2.7 Page 63 of 101

type name description

dwt_deviceentcnts_t * counters Pointer to the device event counters structure.

Typedef struct
{
 uint16 PHE ; //number of received header errors
 uint16 RSL ; //number of received frame sync loss events
 uint16 CRCG ; //number of good CRC received frames
 uint16 CRCB ; //number of bad CRC (CRC error) received frames
 uint16 ARFE ; //number of address filter rejections
 uint16 OVER ; //number of RX overflows (used in double buffer mode)
 uint16 SFDTO ; //SFD timeouts
 uint16 PTO ; //Preamble timeouts
 uint16 RTO ; //RX frame wait timeouts
 uint16 TXF ; //number of transmitted frames
 uint16 HPW ; //half period warnings
 uint16 TXW ; //power up warnings

} dwt_deviceentcnts_t ;

Return Parameters:

none

Notes:

This function is used to read the internal counters. These count the number of frames transmitted,

received, and also number of errors received/detected.

Fields Description of fields within the dwt_deviceentcnts_t structure

PHE PHR error counter is a 12-bit counter of PHY header errors.

RSL
RSE error counter is a 12-bit counter of the non-correctable error events

that can occur during Reed Solomon decoding.

CRCG
Frame check sequence good counter is a 12-bit counter of the frames

received with good CRC/FCS sequence.

CRCB
Frame check sequence error counter is a 12-bit counter of the frames

received with bad CRC/FCS sequence.

ARFE
Frame filter rejection counter is a 12-bit counter of the frames rejected by

the receive frame filtering function.

OVER

RX overrun error counter is a 12-bit counter of receive overrun events. This

is essentially a count of the reporting of overrun events, i.e. when using

double buffer mode, and the receiver has already received two frames,

and the host has not processed the first one. The receiver will flag an

overrun when it starts receiving a third frame.

SFDT SFD timeout errors counter is a 12-bit counter of SFD timeout error events.

DW1000 Device Driver API Guide

© Decawave Ltd 2016 Version 2.7 Page 64 of 101

Fields Description of fields within the dwt_deviceentcnts_t structure

PTO
Preamble detection timeout event counter is a 12-bit counter of preamble

detection timeout events.

RTO
RX frame wait timeout event counter is a 12-bit counter of receive frame

wait timeout events.

TXF
TX frame sent counter is a 12-bit counter of transmit frames sent events.

This is incremented every time a frame is sent.

HPW

Half period warning counter is a 12-bit counter of “Half Period Warning”

events. These relate to late invocation of delayed transmission or

reception functionality.

TXW

TX power-up warning counter is a 12-bit counter of “Transmitter Power-Up

Warning” events. These relate to a delayed sent time that is too short to

allow proper power up of TX blocks before the delayed transmission.

5.63 dwt_readtempvbat

uint16 dwt_readtempvbat(uint8 fastSPI);

This dwt_readtempvbat() API function reads the temperature and battery voltage. Note, although

there is an option of reading the temperature and voltage with the “fast” SPI (i.e. > 3 MHz), this will

not always return a correct result. When using slow SPI the read values will be correct, as the

DW1000 will switch to XTAL clock before reading the values.

Parameters:

type name description

uint8 fastSPI

Should be set to 1 if this function is called when SPI rate used is

> 3 MHz. If this is set to 0, then the SPI rate has to be < 3 MHz

and the DW1000 has to be in IDLE.

Return Parameters:

type description

uint16 The low 8-bits are voltage value, and the high 8-bits are temperature value.

Notes:

This function can be called to read the battery voltage and temperature of DW1000. It enables the

DW1000 internal convertors to sample the current IC temperature and battery.

To correctly read temperature and voltage values the DW1000 should be configured to use xtal

clock and a SPI rate of < 3 MHz needs to be used. However if the application wants to read this e.g.

DW1000 Device Driver API Guide

© Decawave Ltd 2016 Version 2.7 Page 65 of 101

while receiver is turned on or using fast SPI rate then the function will use a delay of 1 ms to

stabilise the values being read.

5.64 dwt_convertrawtemperature

float dwt_convertrawtemperature(uint8 raw_temp);

This function takes a raw temperature value and applies the conversion factor to return a

temperature in degrees.

Parameters:

type name description

uint8 raw_temp Raw 8-bit temperature value, as returned by dwt_readtempvbat

Return Parameters:

type description

float The temperature value in degrees.

Notes:

This function is called to convert the raw IC temperature to degrees, the conversion is given by:

Temperature (°C) = ((SAR_LTEMP – OTP_READ(Vtemp @ 23°C)) x 1.14) + 23

5.65 dwt_convertdegtemptoraw

uint8 dwt_convertdegtemptoraw(int16 externaltemp);

This function takes an externally measured temperature in 10ths of degrees Celsius and converts it

into IC temperature units, as if produced by the SAR A/D. The dwt_initalise() API needs to be called

before calling this dwt_convertdegtemptoraw() API to ensure internal structure contains the

SAR_LTEMP (reference measured @ 23 ˚C) value from OTP.

Parameters:

type name description

int16 externaltemp Externally measured temperature value, in 10ths of ˚C.

Return Parameters:

type description

uint8 The temperature value in DW IC temperature units.

Notes:

DW1000 Device Driver API Guide

© Decawave Ltd 2016 Version 2.7 Page 66 of 101

5.66 dwt_convertrawvoltage

float dwt_convertrawvoltage (uint8 raw_volt);

This function takes a raw voltage value and applies the conversion factor to return a voltage in volts.

Parameters:

type name description

uint8 raw_volt Raw 8-bit voltage value, as returned by dwt_readtempvbat

Return Parameters:

type description

float The voltage value in volts.

Notes:

This function is called to convert the raw IC voltage to volts, the conversion is given by:

Voltage (V) = ((SAR_LVBAT – OTP_READ(Vmeas @ 3.3 V)) / 173) + 3.3

5.67 dwt_convertvoltstoraw

float dwt_convertvoltstoraw (int32 externalmvolt);

This function takes a voltage value in millivolts and converts it into “raw” IC voltage units, as if

produced by the SAR A/D. The dwt_initalise() API needs to be called before calling this

dwt_convertvoltstoraw() API to ensure that the local data structure contains the SAR_LVBAT

(reference measured @ 3.3 V) value from OTP.

Parameters:

type name description

int32 externalmvolt This is a true voltage in millivolts to convert to IC units

Return Parameters:

type description

uint8 The voltage value in DW IC voltage units.

Notes:

DW1000 Device Driver API Guide

© Decawave Ltd 2016 Version 2.7 Page 67 of 101

5.68 dwt_readwakeuptemp

uint8 dwt_readwakeuptemp(void);

This function reads the IC temperature sensor value that was sampled during IC wake-up.

Parameters:

none

Return Parameters:

type description

uint8 The 8-bits are temperature value sampled at wakeup event.

Notes:

This function may be used to read the temperature sensor value that was sampled by DW1000 on

wake up, assuming the DWT_TANDV bit in the mode parameter was set in a call to

dwt_configuresleep() before entering sleep mode. If the wakeup sampling of the temperature sensor

was not enabled then the value returned by dwt_readwakeuptemp()

5.69 dwt_readwakeupvbat

uint8 dwt_ readwakeupvbat (void);

This function reads the battery voltage sensor value that was sampled during IC wake-up.

Parameters:

none

Return Parameters:

type description

uint8 The 8-bits are voltage value sampled at wake up event.

Notes:

This function may be used to read the battery voltage sensor value that was sampled by DW1000 on

wake up, assuming the DWT_TANDV bit in the mode parameter was set in the call to

dwt_configuresleep() before entering sleep mode. If the wakeup sampling of the battery voltage

sensor was not enabled then the value returned by dwt_readwakeupvbat() will not be valid.

5.70 dwt_otpread

void dwt_otpread(uint16 address, uint32 *array, uint8 length);

This function is used to read a number (given by length) of 32-bit values from the DW1000 OTP

memory, starting at given address. The given array will contain the read values.

Parameters:

DW1000 Device Driver API Guide

© Decawave Ltd 2016 Version 2.7 Page 68 of 101

type name description

uint16 address This is starting address in the OTP memory from which to read

uint16* array
This is the 32-bit array that will hold the read values. It should

be of at least length 32-bit words long.

uint8 length The number of values to read

Return Parameters:

none

Notes:

5.71 dwt_otpwriteandverify

int dwt_otpwriteandverify(uint32 value, uint16 address);

This function is used to program 32-bit value into the DW1000 OTP memory.

Parameters:

type name description

uint32 value this is the 32-bit value to be programmed into OTP memory

uint16 address
this is the 16-bit OTP memory address into which the 32-bit

value is programmed

Return Parameters:

type description

int Return value can be either DWT_SUCCESS = 0 or DWT_ERROR = -1.

Notes:

The DW1000 has a small amount of one-time-programmable (OTP) memory intended for device

specific configuration or calibration data. Some areas of the OTP memory are used to save device

calibration values determined during DW1000 testing, while other OTP memory locations are

intended to be set by the customer during module manufacture and test.

Programming OTP memory is a one-time only activity, any values programmed in error cannot be

corrected. Also, please take care when programming OTP memory to only write to the designated

areas – programming elsewhere may permanently damage the DW1000’s ability to function

normally.

DW1000 Device Driver API Guide

© Decawave Ltd 2016 Version 2.7 Page 69 of 101

The OTP memory locations are as defined in Table 15. The OTP memory locations are each 32-bits

wide, OTP addresses are word addresses so each increment of address specifies a different 32-bit

word.

Table 15: OTP memory map

OTP
Address

Size
(Used
Bytes)

Byte [3] Byte [2] Byte [1] Byte [0]
Programmed

By

0x000 4 64 bit EUID
(These 64 bits get automatically copied over to Register File 0x01:EUI on each reset.)

Customer
0x001 4

0x002 4
Alternative 64bit EUID Customer

0x003 4

0x004 4 40 bit LDOTUNE_CAL
(These 40 bits can be automatically copied over to Sub Register File 0x28:30 LDOTUNE
on wakeup)

Decawave Test
0x005 1

0x006 4 {“0001,0000,0001“, "CHIP ID (20 bits)"} Decawave Test

0x007 4 {“0001”“, "LOT ID (28 bits)"} DecawaveTest

0x008 2 - - Vmeas @ 3.7 V Vmeas @ 3.3 V DecawaveTest

0x009 1 / 1 - - Tmeas @ Ant Cal Tmeas @ 23 °C
Customer / Deca-

wave Test

0x00A 0 - Reserved

0x00B 4 - Reserved

0x00C 2 - Reserved

0x00D 4 - Reserved

0x00E 4 - Reserved

0x00F 4 - Reserved

0x010 4 CH1 TX Power Level PRF 16 Customer

0x011 4 CH1 TX Power Level PRF 64 Customer

0x012 4 CH2 TX Power Level PRF 16 Customer

0x013 4 CH2 TX Power Level PRF 64 Customer

0x014 4 CH3 TX Power Level PRF 16 Customer

0x015 4 CH3 TX Power Level PRF 64 Customer

0x016 4 CH4 TX Power Level PRF 16 Customer

0x017 4 CH4 TX Power Level PRF 64 Customer

0x018 4 CH5 TX Power Level PRF 16 Customer

0x019 4 CH5 TX Power Level PRF 64 Customer

0x01A 4 CH7 TX Power Level PRF 16 Customer

0x01B 4 CH7 TX Power Level PRF 64 Customer

0x01C 4 TX/RX Antenna Delay – PRF 64 TX/RX Antenna Delay – PRF 16 Customer

0x01D 0 - - - - Customer

0x01E 2 - - OTP Revision XTAL_Trim[4:0] Customer

0x01F 0 - - - - Customer

: : : : : : Reserved

0x400 4 SR Register (see below) Customer

DW1000 Device Driver API Guide

© Decawave Ltd 2016 Version 2.7 Page 70 of 101

The SR (“Special Register”) is a 32-bit segment of OTP that is directly readable via the register

interface upon power up. To program the SR register follow the normal OTP programming method

but set the OTP address to 0x400. The value of the SR register can be directly read back at address.

For more information on OTP memory programming please consult the DW1000 User Manual [2]

and Data Sheet [1].

5.72 dwt_setleds

void dwt_setleds(uint8 mode);

This is used to set up Tx/Rx GPIOs which are then used to control (for example) LEDs. This is not

completely IC dependent and requires that LEDs are connected to the DW1000 GPIO lines.

Parameters:

type name description

uint8 mode This is a bit field value interpreted as defined in Table 16

Return Parameters:

none

Notes:

For more information on GPIO control and configuration please consult the DW1000 User Manual [2]

and Data Sheet [1].

Table 16: Mode parameter to dwt_setleds() function

Mode
Mask
Value

Description

DWT_LEDS_DISABLE 0x0 Disable LEDs functionality.

DWT_LEDS_ENABLE 0x1 Configure GPIOs to drive TX/RX LEDs.

DWT_LEDS_INIT_BLINK 0x2 Blink the TX/RX LEDs.

5.73 dwt_setfinegraintxseq

void dwt_setfinegraintxseq(int enable);

This is used to activate/deactivate fine grain TX sequencing. This is needed for some modes of

operation, e.g. continuous wave mode or when driving an external PA. Please refer to [2] for more

details about those modes.

Parameters:

type name description

DW1000 Device Driver API Guide

© Decawave Ltd 2016 Version 2.7 Page 71 of 101

int enable Set to 1 to enable fine grain TX sequencing, 0 to disable it.

Return Parameters:

none

Notes:

 none

5.74 dwt_setlnapamode

void dwt_setlnapamode(int config);

This is used to enable GPIO for external LNA or PA functionality – HW dependent, consult the

DW1000 User Manual [2]. This can also be used for debug as enabling TX and RX GPIOs is can help

monitoring DW1000's activity.

Parameters:

type name description

int config
Configuration to enable or disable GPIOs to support external

LNA/PA functionality, see Table 17 .

Return Parameters:

none

Notes:

Enabling PA functionality requires that fine grain TX sequencing is deactivated. This can be done using

the dwt_setfinegraintxseq() API function.

For more information on GPIO control and configuration please consult the DW1000 User Manual [2]

and Data Sheet [1].

Table 17: Config parameter to dwt_setlanpamode() function

Mode
Mask
Value

Description

DWT_LNA_PA_DISABLE 0x0 Do not configure GPIOs for external PA or LNA functionality.

DWT_LNA_ENABLE 0x1 Configure GPIOs for external LNA functionality.

DWT_PA_ENABLE 0x2 Configure GPIOS for external PA functionality

5.75 dwt_enablegpioclocks

void dwt_enablegpioclocks(void);

This is used to enable clocks needed for correct GPIO operation.

Parameters:

none

DW1000 Device Driver API Guide

© Decawave Ltd 2016 Version 2.7 Page 72 of 101

Return Parameters:

none

Notes:

For more information on GPIO control and configuration please consult the DW1000 User Manual [2]

and Data Sheet [1]

5.76 dwt_setgpiodirection

void dwt_setgpiodirection(uint32 gpioNum, uint32 direction);

This is used to configure the direction of DW1000 GPIOs. The GPIOs can be used as either inputs (1)

or outputs (0). Reader should study this functionality in the DW1000 User Manual [2].

Parameters:

type name description

uint32 gpioNum

This selects the GPIOs ports to configure. It is a bitmask, which

allows for many ports to be configured simultaneously. The

mask values (GxM0... GxM8) are defined in deca_regs.h

uint32 direction

This sets the GPIOs direction. A value of zero is used to set the

direction to output, and the appropriate direction mask value

is used to set the port as input. This allows multiple ports to

be configured simultaneously.

Any ports not selected by the gpioNum (mask) parameter are

unchanged.

Return Parameters:

none

Notes:

For more information on GPIO control and configuration please consult the DW1000 User Manual [2]

and Data Sheet [1].

5.77 dwt_setgpiovalue

void dwt_setgpiovalue(uint32 gpioNum, uint32 value);

This is used to set GPIO output lines high (1) or low (0).

Parameters:

type name description

uint32 gpioNum

This selects the GPIOs ports to output on. It is a bitmask, which

allows for many ports to be changed simultaneously. The mask

values (GxM0... GxM8) are defined in deca_regs.h.

DW1000 Device Driver API Guide

© Decawave Ltd 2016 Version 2.7 Page 73 of 101

uint32 value

This sets the GPIOs value. A value of zero outputs a low voltage,

and the appropriate output mask value is used to set the port

high. This allows multiple ports to be controlled

simultaneously.

Any ports not selected by the gpioNum (mask) parameter or

not configured as outputs are unchanged.

Return Parameters:

none

Notes:

For more information on GPIO control and configuration please consult the DW1000 User Manual [2]

and Data Sheet [1].

5.78 dwt_getgpiovalue

void dwt_getgpiovalue(uint32 gpioNum);

This is used to return 1 or 0 depending if the GPIO is high or low, only one GPIO should be tested at a

time.

Parameters:

type name description

uint32 gpioNum

This selects the GPIOs ports to output on. It is a bitmask, which

allows for many ports to be changed simultaneously. The mask

values (GxM0... GxM8) are defined in deca_regs.h.

Return Parameters:

none

Notes:

For more information on GPIO control and configuration please consult the DW1000 User Manual [2]

and Data Sheet [1]

5.79 dwt_setxtaltrim

void dwt_setxtaltrim(uint8 value);

This function writes the crystal trim value parameter into the DW1000 crystal trimming register.

Parameters:

type name description

uint8 value
Crystal trim value (in range 0x0 to 0x1F, 31 steps (~1.5ppm per

step).

DW1000 Device Driver API Guide

© Decawave Ltd 2016 Version 2.7 Page 74 of 101

Return Parameters:

none

Notes:

NB: the SPI frequency has to be set to < 3 MHz before a call to this function.

This function can be called any time to set the crystal trim register value. This is used to fine tune and

adjust the XTAL frequency. Better long range performance may be achieved when crystals are more

closely matched. Crystal trimming may allow this without using expensive TCXO devices. Please

consult the DW1000 User Manual [2], Data Sheet [1] and application notes available on

www.decawave.com.

5.80 dwt_getxtaltrim

uint8 dwt_getxtaltrim(void);

This function returns the current value of XTAL trim. If called after dwt_initalise() on power up, it will

either contain crystal trim value loaded from OTP memory or a default value.

Parameters:

 none

Return Parameters:

type Description

uint8 Current crystal trim value.

Notes:

5.81 dwt_configcwmode

void dwt_configcwmode(uint8 chan);

This function configures the device to transmit a Continuous Wave (CW) at a specified channel

frequency. This may be of use as part of crystal trimming procedure. Please consult with Decawave’s

applications support team for details of crystal trimming procedures and considerations.

Parameters:

type name description

uint8 chan This sets the UWB channel number, (defining the centre

frequency and bandwidth). The supported channels are 1, 2, 3,

4, 5, and 7.

http://www.decawave.com/

DW1000 Device Driver API Guide

© Decawave Ltd 2016 Version 2.7 Page 75 of 101

Return Parameters:

none

Notes:

NB: the SPI frequency has to be set to < 3 MHz before a call to this function.

Example code below of how to use this function in conjunction with dwt_setxtaltrim() function is

given by the Example 4a: continuous wave mode sample example in the API package [5].

Example code:

// The table below specifies the default TX spectrum configuration

// parameters... this has been tuned for DW EVK hardware units

const tx_struct tx_spectrumconfig[NUM_CH] =

{

 // Channel 1

 {

 0xc9, //PG_DELAY

 {

 0x75757575, //16M prf power

 0x67676767 //64M prf power

 }

 },

 // Channel 2

 {

// Add other channels here

 },

 // Channel 7

 {

 0x93, //PG_DELAY

 {

 0x92929292, //16M prf power

 0xd1d1d1d1 //64M prf power

 }

 }

};

void xtalcalibration(void)

{

 int i;

 uint8 chan = 2 ;

 uint8 prf = DWT_PRF_16M ;

 dwt_txconfig_t configTx ;

// MUST SET SPI <= 3 MHz for this calibration activity.

Setspibitrate(SPI_3MHz); // target platform function to set SPI rate

// to 3 MHz

 //

 // reset device

 //

 dwt_softreset();

 //

 // configure TX channel parameters

 //

 configTx.pGdly = tx_spectrumconfig[chan-1].PG_DELAY ;

configTx.power = tx_spectrumconfig[chan-1].tx_pwr[prf - DWT_PRF_16M];

DW1000 Device Driver API Guide

© Decawave Ltd 2016 Version 2.7 Page 76 of 101

 dwt_configuretxrf(&configTx);

 dwt_configcwmode(chan);

 for(i=0; i<=0x1F; i++)

 {

 dwt_setxtaltrim(i);

 // measure the frequency

 // Spectrum Analyser set:

 // FREQ to be channel default e.g. 3.9936 GHz for channel 2

 // SPAN to 10MHz

 // PEAK SEARCH

 } // end for

 // when the crystal trim has completed, the device should be reset

// with a call to dwt_softreset()after which it can be programmed

// using the API functions for desired operation

 return;

} // end xtalcalibration()

5.82 dwt_configcontinuousframemode

void dwt_configcontinuousframemode(uint32 framerepetitionrate);

This function configures the DW1000 in continuous frame mode. This facilitates measurement of the

power in the transmitted spectrum.

Parameters:

type name description

uint32 framerepetitionrate

This is a 32-bit value that is used to set the interval

between transmissions. The minimum value is 4. The units

are approximately 8 ns. (or more precisely

512/(499.2e6*128) seconds)).

Return Parameters:

none

Notes:

NB: the SPI frequency has to be set to < 3 MHz before a call to this function.

This function is used to configure continuous frame (transmit power spectrum test) mode, used in TX

power spectrum measurements. This test mode is provided to help support regulatory approvals

spectral testing. Please consult with Decawave’s applications support team for details of regulatory

approvals considerations. The dwt_configcontinuousframemode() function enables a repeating

transmission of the data from the transmit buffer. To use this test mode, the operating channel,

preamble code, data length, offset, etc. should all be set-up as if for a normal transmission.

The framerepititionrate parameter value is programmed in units of one quarter of the 499.2 MHz

fundamental frequency, (~ 8 ns). To send one frame per millisecond, a value of 124800 or

0x0001E780 should be set. A value <4 will not work properly, and a time value less than the frame

length will cause the frames to be sent back-to-back without any pause.

We expect there to be two use cases for the dwt_configcontinuousframemode() function:

DW1000 Device Driver API Guide

© Decawave Ltd 2016 Version 2.7 Page 77 of 101

(a) Testing to figure out the TX power/pulse width to meet the regulations.

(b) In the approvals house to enable the spectral test.

To end the test and return to normal operation the device can be rest with dwt_softreset() function.

Please see Example 4b: continuous frame mode, of the API package [5] for an example of the use of

this API function.

Example code:

// The table below specifies the default TX spectrum configuration

// parameters... this has been tuned for DW EVK hardware units

const tx_struct tx_s [NUM_CH] =

{

 {// Channel 1

 0xc9, //PG_DELAY

 {

 0x75757575, //16M prf power

 0x67676767 //64M prf power

 }

 },

 {// Channel 2

… Add other channels should be added here

 },

 {// Channel 7

 0x93, //PG_DELAY

 {

 0x92929292, //16M prf power

 0xd1d1d1d1 //64M prf power

 }

 }

};

int powertest(void)

{

 dwt_config_t config ;

 dwt_txconfig_t configTx ;

 uint8 msg[127]= "The quick brown fox jumps over the lazy dog."

 "The quick brown fox jumps over the lazy dog."

 "The quick brown fox jumps over the l";

 // MUST SET SPI <= 3 MHz for this calibration activity.

 Setspibitrate(SPI_3MHz); // target platform function to set SPI rate

// to 3 MHz

// reset device

dwt_softreset();

 // configure channel parameters

config.chan = 2;

 config.rxCode = 9;

 config.txCode = 9;

 config.prf = DWT_PRF_64M;

 config.dataRate = DWT_BR_110K;

 config.txPreambLength = DWT_PLEN_2048;

 config.rxPAC = DWT_PAC64;

 config.nsSFD = 1;

 dwt_configure(&config) ;

 configtx.Pgdly = tx_s[config.chan-1].PG_DELAY ;

DW1000 Device Driver API Guide

© Decawave Ltd 2016 Version 2.7 Page 78 of 101

configTx.power = tx_s[config.chan-1].tx_pwr[config.prf - DWT_PRF_16M];

 dwt_configuretxrf(&configTx);

 // the value here 0x1000 gives a period of 32.82 µs

dwt_configcontinuousframemode(0x1000);

 dwt_writetxdata(127, (uint8 *) msg, 0) ;

 dwt_writetxfctrl(127, 0, 0);

 //to start the first frame - set TXSTRT

dwt_starttx(DWT_START_TX_IMMEDIATE);

 //measure the channel power

 //Spectrum Analyser set:

 //FREQ to be channel default e.g. 3.9936 GHz for channel 2

 //SPAN to 1GHz

 //SWEEP TIME 1s

 //RBW and VBW 1MHz

 // After the power is measured, the values in configTx can be changed

// to tune the spectrum. To stop the continuous frame mode, a call to

// dwt_softreset()is needed, after which the device can be programmed

// using the API functions for desired operation

 return DWT_SUCCESS ;

}

5.83 dwt_calcbandwidthtempadj

uint8 dwt_calcbandwidthtempadj(uint16 target_count);

This function runs a bandwidth compensation algorithm that adjusts the bandwidth of the DW1000

output spectrum to correct for the effects of different temperatures. This ensures that the

bandwidth is constant at any temperature. The target count parameter is a reference value taken at

a known temperature for a known good bandwidth using the dwt_calcpgcount() API call, which

relates directly to the bandwidth of the spectrum.

Parameters:

Type name description

uint16 target_count
This is a 16-bit value that is used by the DW1000 to calculate

a bandwidth adjust value

Return Parameters:

type Description

uint8 This is an 8-bit value that represents a pulse generator delay (PG_DELAY) value

Notes:

DW1000 Device Driver API Guide

© Decawave Ltd 2016 Version 2.7 Page 79 of 101

See the app note in [4] for more details. The return value should that should be set in the PGdly

member of the dwt_txconfig_t struct and passed to dwt_configtxrf() to adjust the bandwidth

correctly at the current temperature. See the section on dwt_configtxrf() for details.

5.84 dwt_calcpgcount

uint16 dwt_calcpgcount(uint8 pgdly);

This function returns a pulse generator count value that is used as a reference for bandwidth

compensation over temperature. The pulse generator delay value that is passed in should be the

current bandwidth setting.

Parameters:

Type Name description

uint8 pgdly
This is an 8-bit value representing the current pulse generator

delay for the current bandwidth setting for the DW1000

Return Parameters:

type Description

uint16
This is a 16-bit value that represents the pulse generator count value for the

current pulse generator delay. It is directly related to the bandwidth.

Notes:

See the app note in [4] for more details. The return value should be stored as a reference to be used

with dwt_calcbandwidthtempadj().

5.85 dwt_calcpowertempadj

uint32 dwt_calcpowertempadj(uint8 channel, uint32 ref_powerreg, int delta_temp);

The transmit level of the DW1000 varies depending on temperature. This dwt_calcpowertempadj()

API can be used to calculate an adjustment to the TX power register setting to compensate for this

variation based on the difference between the reference calibration temperature (e.g. accessed via

dwt_geticreftemp() API function) and the current temperature (e.g. as can be ascertained via the

dwt_readtempvbat() API function). This dwt_calcpowertempadj() API returns an adjusted TX power

register value for the temperature delta, which is also dependant on the operating channel. The

reference measurements are made during calibration of the DW1000, namely the device

temperature and the TX power register values are recorded during calibration.

Parameters:

Type Name Description

DW1000 Device Driver API Guide

© Decawave Ltd 2016 Version 2.7 Page 80 of 101

uint8 channel

This is an 8-bit value containing the channel number at which

the DW1000 is operating.

NB: Only channels 2 and 5 are supported.

uint32 ref_powerreg
This is a 32-bit value containing the TX power register value

at the time of calibration.

int delta_temp

This is a delta (in “raw” IC temperature units) between the

current temperature of the IC and the reference

temperature at which calibration was carried.

Return Parameters:

type Description

uint32
This is a 32-bit value that represents the TX power register value adjusted to

account for the effects of temperature on the output power of the DW1000

Notes:

Only channels 2 and 5 are supported, to use other channels will require calculation of new

temperature compensation factors, and revision of the internal code of the API function.

See the app note in [4] for more details. The return value should be set as the power element of the

dwt_txconfig_t structure passed into the dwt_configtxrf() API function, see dwt_configtxrf() for

details.

5.86 dwt_readcarrierintegrator

int32 dwt_readcarrierintegrator(void) ;

The dwt_readcarrierintegrator() API function reads the receiver carrier integrator value and returns

it as a 32-bit signed value. The receive carrier integrator value is valid at the end of reception of a

frame, (and before the receiver is re-enabled). It reflects the frequency offset of the remote

transmitter with respect to the local receive clock. A positive carrier integrator value means that the

local receive clock is running faster than that of the remote transmitter device.

Parameters:

none

Return Parameters:

type Description

int32 Receiver carrier integrator value

Notes:

DW1000 Device Driver API Guide

© Decawave Ltd 2016 Version 2.7 Page 81 of 101

This dwt_readcarrierintegrator() API may be called after receiving a frame to determine the clock

offset of the remote transmitter the sent the frame. The receive frame should be valid (i.e. with good

CRC) otherwise the clock offset information may be incorrect. The following constants are defined to

allow the returned carrier integrator be converted to a frequency offset in Hertz (which depends on

the data rate, 110Kb/s is different to the rest), and from that to a clock offset in PPM (which depends

on the channel centre frequency): FREQ_OFFSET_MULTIPLIER, FREQ_OFFSET_MULTIPLIER_110KB,

HERTZ_TO_PPM_MULTIPLIER_CHAN_1, HERTZ_TO_PPM_MULTIPLIER_CHAN_2,

HERTZ_TO_PPM_MULTIPLIER_CHAN_3 and HERTZ_TO_PPM_MULTIPLIER_CHAN_5.

The HERTZ_TO_PPM_xxx multipliers are negative quantities, so when the resultant clock offsets are

positive it means that the local receiver’s clock is running slower than that of the remote transmitter.

Example code:

int32 ci ;

float clockOffsetHertz ;

float clockOffsetPPM ;

ci = dwt_readcarrierintegrator() ; // Read carrier integrator value

// at 110 kb/s data rate convert carrier integrator to clock offset in Hz.

clockOffsetHertz = ci * FREQ_OFFSET_MULTIPLIER_110KB ;

// On channel 5 convert this to clock offset in PPM.

clockOffsetPPM = clockOffsetHertz * and HERTZ_TO_PPM_MULTIPLIER_CHAN_5 ;

NB: Please also refer to simple example 6: single-sided two-way ranging (SS TWR) where the
initiator end (since driver version 4.0.6) uses the carrier integrator to correct the range estimate
calculation for the clock offset of the remote responder node.

5.87 SPI driver functions

These functions are platform specific SPI read and write functions, external to the DW1000 driver

code, used by the device driver to send and receive data over the SPI interface to and from the

DW1000. The DW1000 device driver abstracts the target SPI device by calling it through generic

functions writetospi() and readfromspi(). In porting the DW1000 device driver, to different target

hardware, the body of these SPI functions should be written, re-written, or provided in the target

specific code to drive the target microcontroller device’s physical SPI hardware. The initialisation of

the target host controller’s physical SPI interface mode and its data rate is considered to be part of

the target system and is done in the host code outside of the DW1000 device driver functions.

5.87.1 writetospi

int writetospi (uint16 hLen, const uint8 *hbuff, uint32 bLen, const uint8 *buffer) ;

This function is called by the DW1000 device driver code (from the dwt_writetodevice() function)

when it wants to write to the DW1000’s SPI interface (registers) over the SPI bus.

Parameters:

DW1000 Device Driver API Guide

© Decawave Ltd 2016 Version 2.7 Page 82 of 101

type name description

uint16 hLen This is gives the length of the header buffer (hbuff)

uint8* hbuff
This is a pointer to the header buffer byte array. The LSB is the first

element.

Uint32 bLen This is gives the length of the data buffer (buffer), to write.

Uint8* buffer
This is a pointer to the data buffer byte array. The LSB is the first

element. This holds the data to write.

Return Parameters:

Type description

int Return value can be either DWT_SUCCESS = 0 or DWT_ERROR = -1.

Notes:

The return values can be used to notify the upper application layer that there was a problem with SPI

write. In DW1000 API dwt_writetodevice() function the return value from this function is returned.

However it should be noted that the DW1000 device driver itself does not take any notice of

success/error return value but instead assumes that SPI accesses succeed without error.

5.87.2 readfromspi

int readfromspi (uint16 hLen, const uint8 *hbuff, uint32 bLen, uint8 *buffer) ;

This function is called by the DW1000 device driver code (from the dwt_readfromdevice() function)

when it wants to read from the DW1000’s SPI interface (registers) over the SPI bus.

Parameters:

type name description

uint16 hLen This is gives the length of the header buffer (hbuff)

uint8* hbuff This is a pointer to the header buffer byte array. The LSB is the first

element.

Uint32 bLen This is gives the number of bytes to read.

Uint8* buffer This is a pointer to the data buffer byte array. The LSB is the first

element. This holds the data being read.

Return Parameters:

DW1000 Device Driver API Guide

© Decawave Ltd 2016 Version 2.7 Page 83 of 101

Type description

int Return value can be either DWT_SUCCESS = 0 or DWT_ERROR = -1.

Notes:

The return values can be used to notify the upper application layer that there was a problem with SPI

read. In DW1000 API dwt_readfromdevice() function the return value from this function is returned.

However it should be noted that the DW1000 device driver itself does not take any notice of

success/error return value but instead assumes that SPI accesses succeed without error.

5.88 Mutual-exclusion API functions

The purpose of these functions is to provide for microprocessor interrupt enable/disable, which is

used for ensuring mutual exclusion from critical sections in the DW1000 device driver code where

interrupts and background processing may interact. The only use made of this is to ensure SPI

accesses are non-interruptible.

The mutual exclusion API functions are decamutexon() and decamutexoff(). These are external to the

DW1000 driver code but used by the device driver when it wants to ensure mutual exclusion from

critical sections. This usage is kept to a minimum and the disable period is also kept to a minimum

(but is dependent on the SPI data rate). A blanket interrupt disable may be the easiest way to

provide this mutual exclusion functionality in the target system, but at a minimum those interrupts

coming from the DW1000 device should be disabled/re-enabled by this activity.

In implementing the decamutexon() and decamutexoff() functions in a particular microprocessor

system, the implementer may choose to use #defines to map these calls transparently to the target

system. Alternatively the appropriate code may be embedded in the functions provided in the

deca_mutex.c source file.

5.88.1 decamutexon

decaIrqStatus_t decamutexon (void) ;

This function is used to turn on mutual exclusion (e.g. by disabling interrupts). This is called at the

start of the critical section of SPI access. The decamutexon() function should operate to read the

current system interrupt status in the target microcontroller system’s interrupt handling logic with

respect to the handling of the DW1000’s interrupt. Let’s call this “IRQ_State” Then it should disable

the interrupt relating to the DW1000, and then return the original IRQ_State.

Parameters:

 none

Return Parameters:

Type Description

DW1000 Device Driver API Guide

© Decawave Ltd 2016 Version 2.7 Page 84 of 101

decaIrqStatus_t

This is the state of the target microcontroller’s interrupt logic with

respect to the handling the DW1000’s interrupt, as it was on entry to

the decamutexon() function before it did any interrupt disabling.

Typedef int decaIrqStatus_t ;

Notes:

The decamutexon() function returns the DW1000 interrupt status, which can be noted and

appropriate action taken. The returned status is intended to be used in the call to

decamutexoff() function to be used to restore the interrupt enable status to its original pre-

decamutexon() state.

5.88.2 decamutexoff

void decamutexoff (decaIrqStatus_t state) ;

This function is used to restore the DW1000’s interrupt state as returned by decamutexon() function.

It is used to turn off mutual exclusion (e.g. by enabling interrupts if appropriate). This is called at the

end of the critical section of SPI access. The decamutexoff() function should operate to restore the

system interrupt status in the target microcontroller system’s interrupt handling logic to the state

indicated by the input “IRQ_State” parameter, state.

Parameters:

type name description

decaIrqStatus_t state This is the state of the target microcontroller’s interrupt

logic with respect to the handling of the DW1000’s

interrupt, as it was on entry to the decamutexon() function

before it did any interrupt disabling.

Return Parameters:

 none

Notes:

The state parameter passed into decamutexoff() function should be used to appropriately

set/restore the system interrupt status in the target microcontroller system’s interrupt

handling logic.

5.89 Sleep function

The purpose of this function is to provide a platform dependent implementation of sleep feature, i.e.

waiting for a certain amount of time before proceeding with the application’s next step.

DW1000 Device Driver API Guide

© Decawave Ltd 2016 Version 2.7 Page 85 of 101

This is an external function used by DW1000 driver code to wait for the end of a process, e.g. the

stabilization of a clock or the completion of a write command. This function is provided in the

deca_sleep.c source file.

5.89.1 deca_sleep

void deca_sleep (unsigned int time_ms) ;

This function is used to wait for a given amount of time before proceeding to the next step of the

calling function.

Parameters:

type name description

unsigned int time_ms The amount of time to wait, expressed in milliseconds.

Return Parameters:

 None

Notes:

The implementation provided here is designed for a simple single-threaded system and is

blocking, i.e. it will prevent the system from doing anything else during the waiting time.

5.90 Subsidiary functions

These functions are used to provide low-level access to individually numbered registers and buffers

(or register files). These may be needed to access IC functionality not included in the main API

functions above.

5.90.1 dwt_writetodevice

dwt_writetodevice (uint16 regID, uint16 index, uint32 length, const uint8 *buffer) ;

This function is used to write to the DW1000’s registers and buffers. The regID specifies the main

address of the register or parameter block being accessed, e.g. a regID of 9 selects the transmit

buffer. The index parameter selects a sub-address within the register file. A regID value of 0 is used

for most of the accesses employed in the device driver. The length parameter specifies the number

of bytes to write, and the buffer parameter points at the bytes to actually write. If

DWT_API_ERROR_CHECK code switch is defined, this function will check input parameters and assert

if an error is detected.

5.90.2 dwt_readfromdevice

void dwt_readfromdevice (uint16 regID, uint16 index, uint32 length, uint8 *buffer) ;

This function is used to read from the DW1000’s registers and buffers. The parameters are the same

as for the dwt_writetodevice function above except that the buffer parameter points at a location

where the bytes being read are placed by the function call. If DWT_API_ERROR_CHECK code switch

DW1000 Device Driver API Guide

© Decawave Ltd 2016 Version 2.7 Page 86 of 101

is defined, this function will check input parameters and assert if an error is detected. It is up to the

developer to ensure that the assert macro is correctly enabled in order to trap any error conditions that arise.

5.90.3 dwt_read32bitreg

uint32 dwt_read32bitreg(int regFileID) ;

This function is used to read 32-bit DW1000 registers.

5.90.4 dwt_read32bitoffsetreg

uint32 dwt_read32bitoffsetreg(int regFileID, int regOffset) ;

This function is used to read a 32-bit DW1000 register that is part of a sub-addressed block.

5.90.5 dwt_write32bitreg

void dwt_write32bitreg(int regFileID, uint32 regval);

This function is used to write a 32-bit DW1000 register that is part of a sub-addressed block.

5.90.6 dwt_write32bitoffsetreg

void dwt_write32bitoffsetreg(int regFileID, int regOffset, uint32 regval);

This function is used to write to a 32-bit DW1000 register that is part of a sub-addressed block.

5.90.7 dwt_read16bitoffsetreg

uint16 dwt_read16bitoffsetreg(int regFileID, int regOffset) ;

This function is used to read a 16-bit DW1000 register that is part of a sub-addressed block.

5.90.8 dwt_write16bitoffsetreg

void dwt_write16bitoffsetreg(int regFileID, int regOffset, uint16 regval);

This function is used to write a 16-bit DW1000 register that is part of a sub-addressed block.

5.90.9 dwt_read8bitoffsetreg

uint8 dwt_read8bitoffsetreg(int regFileID, int regOffset) ;

This function is used to read an 8-bit DW1000 register that is part of a sub-addressed block.

5.90.10 dwt_write8bitoffsetreg

void dwt_write8bitoffsetreg(int regFileID, int regOffset, uint8 regval);

This function is used to write an 8-bit DW1000 register that is part of a sub-addressed block.

DW1000 Device Driver API Guide

© Decawave Ltd 2016 Version 2.7 Page 87 of 101

6 APPENDIX 1 – DW1000 API EXAMPLES APPLICATIONS

The DW1000 API package [5] provides, along with the DW1000 driver itself, a set of simple example

applications designed to show how to achieve a number of basic features of the DW1000 IC like

sending a frame, receiving a frame, putting the DW1000 IC to sleep, etc.

All these examples have been designed to be as simple as possible. The main idea is to make the

code self-explanatory and include the least possible amount of code not directly involved in the

achievement of the example-related feature. One of the consequences of this design is that the

examples output very little (or even no) debug information, and are designed so that the application

flow can be followed using a debugger to examine run-time operations.

On the hardware side, the examples have been designed to run on an EVB1000 board. The base

layers included in this package (see detail below) provide specific implementations for this HW.

6.1 Package structure

The folder structure of the package is the following:

Table 18: DW1000 API package structure for Coocox based IDE

Folder Brief description

decadriver DW1000 device driver

examples Example applications

 example 1
Specific code and CooCox project file for example
application 1

 example 2
Specific code and CooCox project file for example
application 2

 … …

Libraries ARM and STM32 low-level layers

 CMSIS
Hardware abstraction layer for ARM Cortex-M
processors

 STM32F10x_StdPeriph_Driver
Hardware abstraction layer for ST STM32 F1
processors

Linkers Linker script for STM32F105RC processor

platform
Platform dependent implementation of low-level
features (IT management, mutex, sleep, etc.)

Table 19: the API package structure for System Workbench based IDE

Folder Brief description

Src decadriver Decawave UWB transceiver IC device driver

 examples Example applications

 example 1 Specific code for example application 1

 example 2 Specific code for example application 2

 … …

platform

Platform dependent implementation of low-level
features (IT management, mutex, sleep, etc.)

DW1000 Device Driver API Guide

© Decawave Ltd 2016 Version 2.7 Page 88 of 101

Middle
wares

ST
STM32_USB_Device_Lib
rary

STM32 USB device driver library

Drivers
CMSIS

Hardware abstraction layer for ARM Cortex-M
processors

 STM32F1xx_H
AL_Driver

Hardware abstraction layer for ST STM32 F1
processors

All example applications are named after the feature or set of features they implement.

6.2 Building and running the examples

6.2.1 Using Coocox IDE

This section describes building and running of example code using Coocox IDE, for this a Coocox

based API package release needs to be used. All examples provide a specific main.c source file and

a CooCox project file. To build and run the code, just unzip the source and open the .coproj project

file corresponding to the example one wants to build.

CooCox IDE can be downloaded from: http://www.coocox.org/software.html. Please follow the

“Read More” link and download version 1.7.8. These examples have been developed using version

1.7.8.

This code building guide assumes that the reader has ARM Toolchains installed and is familiar with

building code using the CooCox IDE. Those examples have been developed using the GNU Tools ARM

for Embedded.

As shown in Figure 5 please enter the path to ARM tools for embedded toolchain – e.g.

“C:\GNUToolsARMEmbedded\4.8_2014q1\bin”. GNU Tools ARM for Embedded can be found here:

https://launchpad.net/gcc-arm-embedded

Figure 5: Select toolchain path

Please note that an ST-LINK/V2 probe will be needed to be able to program a board with an example

application and observe the application flow using the debugger mode of CooCox.

http://www.coocox.org/software.html
https://launchpad.net/gcc-arm-embedded

DW1000 Device Driver API Guide

© Decawave Ltd 2016 Version 2.7 Page 89 of 101

6.2.2 Using System Workbench IDE

This section describes building and running of example code using System Workbench IDE for

STM32, for this a System Workbench based API package release needs to be used. All examples

provide a specific ex_#_main.c source file and a separate project build configuration. To build and

run the code, just unzip the source and import the project as “Existing Projects into Workspace” into

your ST Workbench IDE.

ST Workbench IDE (SW4STM32) and CubeMX project generator can be downloaded from ST

website. [6]

6.3 Examples list

All examples have been designed to be self-explanatory and quite straightforward to read. The

following is a list of all the examples provided with a brief description of the function of each.

6.3.1 Example 1a: simple TX

This example application repeatedly sends a hard-coded standard blink frame. Hard-coded delay

between frames is 1 second.

6.3.2 Example 1b: TX with sleep

This is a variation of example 1a, where the DW1000 is commanded to sleep and then awaken after

the delay between each frame.

6.3.3 Example 1c: TX with auto sleep

This is a variation of example 1b where the DW1000 automatically goes to sleep after the

transmission of a frame. DW1000 is still commanded to wake up after the desired sleep period has

elapsed before sending the next frame.

6.3.4 Example 1d: TX with timed sleep

This is a variation of example 1c where the DW1000 automatically wakes up using an internal sleep

timer. Before the DW1000 is put to sleep for the first time, the internal low-power oscillator driving

the sleep counter is calibrated so that the desired sleep time can be properly set through the sleep

timer counter.

6.3.5 Example 1e: TX with CCA

Here we implement a simple Clear Channel Assessment (CCA) mechanism before frame

transmission. The CCA can be used to avoid collisions with other frames on the air.

Note this example is not doing CCA the way a continuous carrier radio would do it by looking for

energy/carrier in the band. It is only looking for preamble so will not detect PHR or data phases of

the frame. In a UWB data network it is advised to also do a random back-off before re-transmission

in the event of not receiving acknowledgement to a data frame transmission.

DW1000 Device Driver API Guide

© Decawave Ltd 2016 Version 2.7 Page 90 of 101

6.3.6 Example 2a: simple RX

This example application waits indefinitely for an incoming frame. When a frame is received, it is

read into a local buffer where it can be examined and then the application re-enables the receiver to

start waiting for another frame. It is intended that the simple TX examples (like that in 6.3.1 above)

should be used as a source of frames when running these simple RX examples.

6.3.7 Example 2b: simple RX configured for preamble length of 64 symbols

This is a variation of example 2a where the DW1000 is configured to receive frames that have a short

preamble of just 64 symbols in length. This code applies a configuration change to give more

success in receiving the short preamble. Where it is known that the preamble is longer, it is not

recommended to use this mode of operation.

6.3.8 Example 2c: simple RX with diagnostics

This is a variation of example 2a where RX frame diagnostic information (first path index, channel

impulse response power) and accumulator (channel impulse response) values are read for each

received frame. This information is read into a local structure where it can be examined.

6.3.9 Example 2d: low duty-cycle SNIFF mode

This is a variation of example 2a where the low duty-cycle SNIFF mode of DW1000 is used. When

the receiver is enabled, it begins preamble-hunt mode with the receiver on. In SNIFF mode, the

receiver is not on all the time, but is sequenced on and off, with a defined duty-cycle. In this

example, these durations are defined to give roughly a 50% duty-cycle, which allows a corresponding

reduction in the preamble-hunt power consumption while still being able to receive frames. It is

suggested that the simple TX example, from 6.3.1 above, is used as a source of frames to test this.

Note: SNIFF mode reduces RX sensitivity depending on the on and off period configurations. Please

see the “Low-Power SNIFF mode” chapter in the DW1000 User Manual [2] for more details.

6.3.10 Example 2e: RX using double buffering

This is a variation of example 2a where the double buffering mode of the DW1000 is used. This

example uses interrupts. It is suggested that the reader reviews/tries the “Example 3d: TX then wait

for a response using interrupts”, see 6.3.15 below, before reviewing/examining this example.

Automatic RX re-enable is not used/supported by the API, instead code in the RX callback calls

dwt_rxenable() to re-enable the receiver. The double buffering management (switching between RX

buffers) is integrated to driver’s ISR for performance reasons. The RX interrupt callback handles the

RX re-enabling. It also handles all processing of the received frame to simplify the code flow of this

example. In a larger application, the RX callback (at interrupt level) would typically read the data

from the IC and set a flag (or use some operating system mechanism) to signal the arrival of the

frame (to the background code) for further processing.

DW1000 Device Driver API Guide

© Decawave Ltd 2016 Version 2.7 Page 91 of 101

6.3.11 Example 2f: RX with XTAL trimming

This is an example of a receiver that measures the clock offset of a remote transmitter and then uses

the XTAL trimming function to modify the local clock to achieve a target clock offset. Note: To keep a

system stable it is recommended to only adjust trimming at one end of a link.

6.3.12 Example 3a: TX then wait for a response

This example application is a combination of examples 1a and 2a. This example sends a frame then

waits for a response (with receive timeout enabled). If a response is received, it is stored in a local

buffer for examination and then flow proceeds to the transmission of the next frame. If a response is

not received, the timeout will trigger and the application will proceed to the next transmission.

6.3.13 Example 3b: RX then send a response

This example application is the complement of example 3a. It waits indefinitely for a frame. When a

frame is received, it is stored in a local buffer. If the received frame is the one transmitted by the

example 3a application, then a response is sent. In any case, when the received frame is processed

this simple example application re-enables the receiver to starts waiting again for another frame.

6.3.14 Example 3c: TX then wait for a response with GPIOs/LEDs

This is a variation of example 3a where TX/RX LEDs and TX/RX GPIO lines are activated so that TX and

RX activity can be monitored.

6.3.15 Example 3d: TX then wait for a response using interrupts

This is a variation of example 3a where interrupts and call-backs are used to process received

frames, reception errors and timeouts and transmission confirmation instead of polling with an

infinite loop.

6.3.16 Example 4a: continuous wave mode

This example application activates continuous wave mode for 2 minutes with a predefined

configuration. On a correctly configured spectrum analyser (use configuration values on the picture

below), the output should look like this:

DW1000 Device Driver API Guide

© Decawave Ltd 2016 Version 2.7 Page 92 of 101

Figure 6: Continuous wave output

6.3.17 Example 4b: continuous frame mode

This example application activates continuous frame mode for 2 minutes with a predefined

configuration. On a correctly configured spectrum analyser (use configuration values on the picture

below), the output should look like this:

Figure 7: Continuous frame output

DW1000 Device Driver API Guide

© Decawave Ltd 2016 Version 2.7 Page 93 of 101

6.3.18 Example 5a: double-sided two-way ranging (DS TWR) initiator

This is a simple code example that acts as the initiator in a DS TWR distance measurement exchange.

This application sends a “poll” frame (recording the TX time-stamp of the poll), and then waits for a

“response” message expected from the “DS TWR responder” example code (companion to this

application – see section 6.3.19 below). When the response is received its RX time-stamp is recorded

and we send a “final” message to complete the exchange. The final message contains all the time-

stamps recorded by this application, including the calculated/predicted TX time-stamp for the final

message itself. The companion “DS TWR responder” example application works out the time-of-

flight over-the-air and, thus, the estimated distance between the two devices.

6.3.19 Example 5b: double-sided two-way ranging responder

This is a simple code example that acts as the responder in a DS TWR distance measurement

exchange. This application waits for a “poll” message (recording the RX time-stamp of the poll)

expected from the “DS TWR initiator” example code (companion to this application), and then sends

a “response” message recording its TX time-stamp, after which it waits for a “final” message from

the initiator to complete the exchange. The final message contains the remote initiator’s time-

stamps of poll TX, response RX and final TX. With this data and the local time-stamps, (of poll RX,

response TX and final RX), this example application works out a value for the time-of-flight over-the-

air and, thus, the estimated distance between the two devices, which it writes to the LCD.

6.3.20 Example 6a: single-sided two-way ranging (SS TWR) initiator

This is a simple code example that acts as the initiator in a SS TWR distance measurement exchange.

This application sends a “poll” frame (recording the TX time-stamp of the poll), after which it waits

for a “response” message from the “SS TWR responder” example code (companion to this

application) to complete the exchange. The response message contains the remote responder’s

time-stamps of poll RX, and response TX. With this data and the local time-stamps, (of poll TX and

response RX), this example application works out a value for the time-of-flight over-the-air and, thus,

the estimated distance between the two devices, which it writes to the LCD.

Heretofore, we would have recommended use of double-sided TWR (as per examples 5a and 5b)

instead of this single-sided two-way ranging because the SS-TWR time-of-flight estimation typically

suffers poor accuracy due to the clock offset between the two nodes participating in the TWR

exchange. However since driver version 4.0.6 we are now making use of the carrier integrator

diagnostic from the DW1000 (accessible via the new dwt_readcarrierintegrator() API function) to

measure the clock offset and improve the accuracy SS-TWR range estimate calculation.

6.3.21 Example 6b: single-sided two-way ranging responder

This is a simple code example that acts as the responder in a SS TWR distance measurement

exchange. This application waits for a “poll” message (recording the RX time-stamp of the poll)

expected from the “SS TWR initiator” example code (companion to this application), and then sends

a “response” message to complete the exchange. The response message contains all the time-

stamps recorded by this application, including the calculated/predicted TX time-stamp for the

DW1000 Device Driver API Guide

© Decawave Ltd 2016 Version 2.7 Page 94 of 101

response message itself. The companion “SS TWR initiator” example application works out the time-

of-flight over-the-air and, thus, the estimated distance between the two devices.

6.3.22 Example 7a: Auto ACK TX

This example, with its companion example 8b below, demonstrates the operation of the DW1000’s

auto-ACK function. The code here is based on example 3a, except that in this case the transmitted

frame has the AR (acknowledgement request) bit set in the frame control field of the MAC header,

(following the MAC frame definitions of IEEE 802.15.4), and the turn-around to await response is

immediate, reflecting the ACK response timing of the DW1000.

6.3.23 Example 7b: Auto ACK RX

This complement to example 8a. Here the Auto ACK feature of DW1000 is activated so that frames

sent by companion example 8a are automatically acknowledged.

6.3.24 Example 8a: Low-power listening RX

This example sets up low-power listening mode and then waits to be woken-up by the wake-up

sequence that is sent by the companion example 8b "Low-power listening TX". When a wake up-

frame is received, this example checks if it is the intended recipient of the wake-up sequence, and if

so, it sleeps until the expected end of the wake-up sequence and then takes part in the subsequent

interaction period by sending a frame. After this interaction it reactivates low-power listening. If the

received wake-up sequence is addressed to some other node the code sleeps until after the end of

wakeup and the subsequent the interaction period before reactivating low-power listening.

See "Low-Power Listening" section in [2] for more details.

6.3.25 Example 8b: Low-power listening TX

This example is a companion to example 8a "Low-power listening RX". It sends the wake-up

sequence (a sufficient number of frames sent back-to-back) so that the companion example can be

woken up every once in a while. In every second wake-up sequence sent, the destination address is

changed to a dummy one, to show the effect in the companion receive example of a wakeup for

another node. After the wake-up sequence is sent, an interaction period is started during which this

example waits for an incoming (response) frame from the woken node. When the interaction period

is over, the code of this example waits for 5 seconds before proceeding to another transmission of

the wake-up sequence. (In a real use case for low-powered listening, the time between such wake-

ups is expected to be much longer).

6.3.26 Example 9a: TX Bandwidth and Power Reference Measurements

This example is a prerequisite for example 9b “TX Bandwidth and Power Compensation”. It sets the

DW1000 to chip default settings for transmit bandwidth and power. It then takes reference

measurements that are used during the compensation algorithm in normal operation. The

measurements that it takes are the IC temperature, pulse generator delay and count values (which

are related to bandwidth) and transmit power settings (related to power). The data is displayed on

the LCD screen of the device.

DW1000 Device Driver API Guide

© Decawave Ltd 2016 Version 2.7 Page 95 of 101

6.3.27 Example 9b: TX Bandwidth and Power Compensation

This example is a companion to example 9a “TX Bandwidth and Power Reference Measurements”.

The recorded reference measurements from example 9a should be set in this example before

running. The compensation algorithm corrects the bandwidth and power settings for the effects of

temperature. Using the reference measurements as a base, it samples the current temperature and

performs the correction algorithm for bandwidth and then for power. The DW1000 is then put into

TX continuous frame mode with these corrected settings applied and the spectrum can be measured

on a spectrum analyser.

6.3.28 Example 10a: Use of DW1000 GPIO lines

This example demonstrates how to enable the GPIO lines as inputs and outputs, and drive the

output to turn on/off LED on the EVB1000 board hardware. GPIO2 will be used to flash the RXOK LED

(LED4 on EVB1000) GPIO5 and GPIO6 are configured as inputs, toggling S3-3 and S3-4 will change

them, as S3-3 is connected to GPIO5 and S3-4 to GPIO6

NOTE: The switch S3-3 and S3-4 on EVB1000 board should be OFF before this example is run to

make sure the DW1000 SPI mode is correctly set to mode 0 on IC start up.

DW1000 Device Driver API Guide

© Decawave Ltd 2016 Version 2.7 Page 96 of 101

7 APPENDIX 2 – BIBLIOGRAPHY:

Table 20: Bibliography

[1] Decawave DW1000 Data Sheet

[2] Decawave DW1000 User Manual

[3]

IEEE 802.15.4‐2011 or “IEEE Std 802.15.4™‐2011” (Revision of IEEE Std 802.15.4-2006).

IEEE Standard for Local and metropolitan area networks— Part 15.4: Low-Rate Wireless

Personal Area Networks (LR-WPANs). IEEE Computer Society Sponsored by the LAN/MAN

Standards Committee.

Available from http://standards.ieee.org/

[4] Application note APS023 Part 2: TX Bandwidth and Power Compensation

[5]
DW1000 Application Programming Interface with application examples package

downloadable from http://www.decawave.com/support/software

[6] Installation of tools and drivers, www.st.com

http://standards.ieee.org/
http://www.decawave.com/support/software
http://www.st.com/

DW1000 Device Driver API Guide

© Decawave Ltd 2016 Version 2.7 Page 97 of 101

8 DOCUMENT HISTORY

Table 21: Document History

Revision Date Description

1.0 1st November 2013 Initial release for production device.

1.5 4th November 2014 Scheduled update

1.7 1st July, 2015 Scheduled update

2.0 4th December, 2015 Added new simple example project descriptions

2.1 22nd July, 2016 Added new examples and updated API after driver review

2.2 2nd December, 2016 Added new API calls and examples for TX bandwidth/power compensation

2.3 22nd February, 2017 Added new dwt_setdevicedataptr API function, some minor corrections

2.4 27th February, 2017 Added new dwt_readcarrierintegrator() API function.

2.5 8th June, 2017 Added System Workbench IDE reference

2.6 28th November, 2017 Updated to match API version 5.0.0

9 MAJOR CHANGES

9.1 Release 1.5

Page Change Description

All Update of version number to 1.5

All Various typographical changes

9 Updated the API to match driver version 2.12.0

9.2 Release 1.7

Page Change Description

All Update of version number to 1.7

All Various typographical changes

3 New Disclaimer as new source includes ST’s library files

9 Updated the API to match driver version 2.16.0

New APIs New API functions: dwt_OTPrevision, dwt_setGPIOvalue, dwt_setGPIOdirection, dwt_setGPIOforEXTTRX,

Table 17 New OTP map

9.3 Release 2.0

Page Change Description

All Update of version number to 2.0

All Various typographical changes

9 Updated the API to match driver version 3.0.0

API removal Removal of the following APIs: dwt_getldotune, dwt_getotptxpower, dwt_readantennadelay

DW1000 Device Driver API Guide

© Decawave Ltd 2016 Version 2.7 Page 98 of 101

Page Change Description

17 Updated dwt_initialise parameters

18 Updated dwt_configure parameters

40 Updated dwt_configuresleep parameters

41 to 44 Fixed wake-up time value occurrences from 200 to 500 microseconds

54 Renamed dwt_readdignostics to dwt_readdiagnostics

59 Added new dwt_otp read API

68 Added missing function dwt_checkoverrun

71 Added new deca_sleep API

Appendix 1 Added new simple example project descriptions

9.4 Release 2.1

Page Change Description

All Update of version number to 2.1

All Various typographical changes

All Changed DWT_DECA_ERROR to DWT_ERROR and DWT_DECA_SUCCESS to DWT_SUCCESS

9 Updated the API to match driver version 04.00.xx

17 Updated dwt_initialise description

18 Updated dwt_configure return value and description

25 Updated dwt_writetxdata description

26 Updated dwt_writetxfctrl parameters and return value

33 Updated dwt_rxenable parameters and description

34 Added new API dwt_setsniffmode

44 Added new API set_lowpowerlistening

44 Added new API set_snoozetime

45 Updated dwt_setcallbacks parameters and description

47 Added missing API dwt_checkirq

47 Updated dwt_isr description

50 Added new API dwt_lowpowerlistenisr

63 Update Table 15 (OTP memory map)

64 Updated dwt_setleds parameters

64 Added new API dwt_setfinegraintxseq

65 Added new API dwt_setlnapamode

65 Renamed dwt_setGPIOdirection to dwt_setgpiodirection

66 Renamed dwt_setGPIOvalue to dwt_setgpiovalue

66 Renamed dwt_xtaltrim to dwt_setxtaltrim

67 Added new dwt_getinitxtaltrim API

67 Updated dwt_configcwmode description

75 Updated dwt_writetodevice return value and description

75 Updated dwt_readfromdevice return value and description

76 Updated dwt_write32bitoffsetreg return value

76 Updated dwt_write16bitoffsetreg return value

DW1000 Device Driver API Guide

© Decawave Ltd 2016 Version 2.7 Page 99 of 101

Page Change Description

76 Added new dwt_read8bitoffsetreg and dwt_write8bitoffsetreg APIs

77 to 84 Added the descriptions of the following new examples: 1d, 2b, 2c, 2d, 2e, 3c, 3d, 7a, 7b, 8a, 8b.

API removal Removal of the following APIs: dwt_getrangebias, dwt_setrxmode, dwt_checkoverrun,

dwt_setautorxreenable, dwt_setGPIOforEXTTRX

Table removal Removal of former tables 9 and 14

9.5 Release 2.2

Page Change Description

All Update of version number to 2.2

New APIs New API functions: dwt_calcpowertempadj, dwt_calcbandwidthtempadj, dwt_calcpgcount

86 Added new examples for the new API calls

9.6 Release 2.3

Page Change Description

All Update of version number to 2.3

47 Fixed dwt_spicswakeup API return value and description to match the return values in the driver code

76 Add new dwt_setdevicedataptr API function

9.7 Release 2.4

Page Change Description

22 Fix dwt_configure() API function, the parameters did not match the code.

80 Added new dwt_readcarrierintegrator() API function.

93 Updated text of 6.3.20 Example 6a: single-sided two-way ranging (SS TWR) initiator.

All Update of version number to 2.4

9.8 Release 2.5

Page Change Description

All Updated with new logo

All Update of version number to 2.5

84 Add new section of System Workbench IDE

New APIs Added new APIs: dwt_apiversion, dwt_geticrefvolt, dwt_geticreftemp, dwt_convertrawtemperature,

dwt_convertrawvoltage

48 Updated API: dwt_setinterrupt

9.9 Release 2.6

Page Change Description

All Update of version number to 2.6

New APIs Added new APIs dwt_convertdegtemptoraw, dwt_convertvoltstoraw, dwt_setlocaldataptr, dwt_getgpiovalue,

dwt_enablegpioclocks

19 Modified existing APIs: dwt_initialise – input parameter changed

DW1000 Device Driver API Guide

© Decawave Ltd 2016 Version 2.7 Page 100 of 101

79 Modified existing APIs: dwt_calcpowertempadj – uses integer maths, and input parameter changed

9.10 Release 2.7

Page Change Description

All Update of version number to 2.7

* Fix/correct formatting issues in the last version

20 Update dwt_initialise description and add examples.

74 dwt_getinitxtaltrim has been changed to dwt_getxtaltrim

DW1000 Device Driver API Guide

© Decawave Ltd 2016 Version 2.7 Page 101 of 101

10 FURTHER INFORMATION

Decawave develops semiconductors solutions, software, modules, reference designs - that enable

real-time, ultra-accurate, ultra-reliable local area micro-location services. Decawave’s technology

enables an entirely new class of easy to implement, highly secure, intelligent location functionality

and services for IoT and smart consumer products and applications.

For further information on this or any other Decawave product, please refer to our website

www.decawave.com.

	1 Introduction and overview
	2 General framework
	3 Typical system start-up
	4 Interrupt handling
	5 API function descriptions
	5.1 dwt_apiversion
	5.2 dwt_readdevid
	5.3 dwt_getpartid
	5.4 dwt_getlotid
	5.5 dwt_geticrefvolt
	5.6 dwt_geticreftemp
	5.7 dwt_setlocaldataptr
	5.8 dwt_otprevision
	5.9 dwt_softreset
	5.10 dwt_rxreset
	5.11 dwt_initalise
	5.12 dwt_configure
	5.13 dwt_configuretxrf
	5.14 dwt_setsmarttxpower
	5.15 dwt_setrxantennadelay
	5.16 dwt_settxantennadelay
	5.17 dwt_writetxdata
	5.18 dwt_writetxfctrl
	5.19 dwt_starttx
	5.20 dwt_setdelayedtrxtime
	5.21 dwt_readtxtimestamp
	5.22 dwt_readtxtimestamplo32
	5.23 dwt_readtxtimestamphi32
	5.24 dwt_readrxtimestamp
	5.25 dwt_readrxtimestamplo32
	5.26 dwt_readrxtimestamphi32
	5.27 dwt_readsystime
	5.28 dwt_readsystimestamphi32
	5.29 dwt_forcetrxoff
	5.30 dwt_syncrxbufptrs
	5.31 dwt_rxenable
	5.32 dwt_setsniffmode
	5.33 dwt_setdblrxbuffmode
	5.34 dwt_setrxtimeout
	5.35 dwt_setpreambledetecttimeout
	5.36 dwt_configurefor64plen
	5.37 dwt_loadopsettabfromotp
	5.38 dwt_configuresleepcnt
	5.39 dwt_calibratesleepcnt
	5.40 dwt_configuresleep
	5.41 dwt_entersleep
	5.42 dwt_entersleepaftertx
	5.43 dwt_spicswakeup
	5.44 dwt_setlowpowerlistening
	5.45 dwt_setsnoozetime
	5.46 dwt_setcallbacks
	5.47 dwt_setinterrupt
	5.48 dwt_checkirq
	5.49 dwt_isr
	5.50 dwt_lowpowerlistenisr
	5.51 dwt_setpanid
	5.52 dwt_setaddress16
	5.53 dwt_seteui
	5.54 dwt_geteui
	5.55 dwt_enableframefilter
	5.56 dwt_enableautoack
	5.57 dwt_setrxaftertxdelay
	5.58 dwt_readrxdata
	5.59 dwt_readaccdata
	5.60 dwt_readdiagnostics
	5.61 dwt_configeventcounters
	5.62 dwt_readeventcounters
	5.63 dwt_readtempvbat
	5.64 dwt_convertrawtemperature
	5.65 dwt_convertdegtemptoraw
	5.66 dwt_convertrawvoltage
	5.67 dwt_convertvoltstoraw
	5.68 dwt_readwakeuptemp
	5.69 dwt_readwakeupvbat
	5.70 dwt_otpread
	5.71 dwt_otpwriteandverify
	5.72 dwt_setleds
	5.73 dwt_setfinegraintxseq
	5.74 dwt_setlnapamode
	5.75 dwt_enablegpioclocks
	5.76 dwt_setgpiodirection
	5.77 dwt_setgpiovalue
	5.78 dwt_getgpiovalue
	5.79 dwt_setxtaltrim
	5.80 dwt_getxtaltrim
	5.81 dwt_configcwmode
	5.82 dwt_configcontinuousframemode
	5.83 dwt_calcbandwidthtempadj
	5.84 dwt_calcpgcount
	5.85 dwt_calcpowertempadj
	5.86 dwt_readcarrierintegrator
	5.87 SPI driver functions
	5.87.1 writetospi
	5.87.2 readfromspi

	5.88 Mutual-exclusion API functions
	5.88.1 decamutexon
	5.88.2 decamutexoff

	5.89 Sleep function
	5.89.1 deca_sleep

	5.90 Subsidiary functions
	5.90.1 dwt_writetodevice
	5.90.2 dwt_readfromdevice
	5.90.3 dwt_read32bitreg
	5.90.4 dwt_read32bitoffsetreg
	5.90.5 dwt_write32bitreg
	5.90.6 dwt_write32bitoffsetreg
	5.90.7 dwt_read16bitoffsetreg
	5.90.8 dwt_write16bitoffsetreg
	5.90.9 dwt_read8bitoffsetreg
	5.90.10 dwt_write8bitoffsetreg

	6 Appendix 1 – DW1000 API examples applications
	6.1 Package structure
	6.2 Building and running the examples
	6.2.1 Using Coocox IDE
	6.2.2 Using System Workbench IDE

	6.3 Examples list
	6.3.1 Example 1a: simple TX
	6.3.2 Example 1b: TX with sleep
	6.3.3 Example 1c: TX with auto sleep
	6.3.4 Example 1d: TX with timed sleep
	6.3.5 Example 1e: TX with CCA
	6.3.6 Example 2a: simple RX
	6.3.7 Example 2b: simple RX configured for preamble length of 64 symbols
	6.3.8 Example 2c: simple RX with diagnostics
	6.3.9 Example 2d: low duty-cycle SNIFF mode
	6.3.10 Example 2e: RX using double buffering
	6.3.11 Example 2f: RX with XTAL trimming
	6.3.12 Example 3a: TX then wait for a response
	6.3.13 Example 3b: RX then send a response
	6.3.14 Example 3c: TX then wait for a response with GPIOs/LEDs
	6.3.15 Example 3d: TX then wait for a response using interrupts
	6.3.16 Example 4a: continuous wave mode
	6.3.17 Example 4b: continuous frame mode
	6.3.18 Example 5a: double-sided two-way ranging (DS TWR) initiator
	6.3.19 Example 5b: double-sided two-way ranging responder
	6.3.20 Example 6a: single-sided two-way ranging (SS TWR) initiator
	6.3.21 Example 6b: single-sided two-way ranging responder
	6.3.22 Example 7a: Auto ACK TX
	6.3.23 Example 7b: Auto ACK RX
	6.3.24 Example 8a: Low-power listening RX
	6.3.25 Example 8b: Low-power listening TX
	6.3.26 Example 9a: TX Bandwidth and Power Reference Measurements
	6.3.27 Example 9b: TX Bandwidth and Power Compensation
	6.3.28 Example 10a: Use of DW1000 GPIO lines
	6.3.29

	7 Appendix 2 – Bibliography:
	8 Document History
	9 Major Changes
	9.1 Release 1.5
	9.2 Release 1.7
	9.3 Release 2.0
	9.4 Release 2.1
	9.5 Release 2.2
	9.6 Release 2.3
	9.7 Release 2.4
	9.8 Release 2.5
	9.9 Release 2.6
	9.10 Release 2.7

	10 Further Information

