*TLV3603 ***************************************************************************** * (C) Copyright 2019 Texas Instruments Incorporated. All rights reserved. ***************************************************************************** ** This model is designed as an aid for customers of Texas Instruments. ** TI and its licensors and suppliers make no warranties, either expressed ** or implied, with respect to this model, including the warranties of ** merchantability or fitness for a particular purpose. The model is ** provided solely on an "as is" basis. The entire risk as to its quality ** and performance is with the customer ***************************************************************************** * * This model is subject to change without notice. Texas Instruments * Incorporated is not responsible for updating this model. * ***************************************************************************** * * Released by: Texas Instruments Inc. * Part: TLV3603 * Date: 04/21/2021 * Model Type: TRANSIENT * Simulator: TINA-TI * Simulator Version: 9.3.200.277 SF-TI * Datasheet: SNOSDB1 rev * JULY 2020 (3601/3 preprod) * * Model Version: 1.00 * ***************************************************************************** * * Model Notes: * * Model emulates TYPICAL room temperature performace at 3.3V. * * Modeled parameters: * Supply voltage range (see below) * Supply current (typical) * Input Bias Currents (typical) * Typical Offset Voltage (see below) * Propagation Delay (fixed) * Output Latch and Latch Delay * Power On Reset (no delay) * Hysteresis voltage vs LE/HYST voltage or resistance (see below) * Input Voltage Range (see below) * * INCORRECT INPUT CONDITIONS: If an error condition occurs, such as * incorrect supply votlages or exceeding input voltage range, the output will go to * half the supply votlage. The real device will NOT do this. * * LE_HYST pin: This pin can accept a resistor or external votlage to set * the hysteresis voltage up to 60mV. Valid hysteresis input range is * 0.8V to 1.25V (see datasheet). Some simulators will not accept a floating * pin, so connect a 1G resistor from LE_HYST to VEE to set 0mV hysteresis. * Hysteresis votlage is 0mV when LE_HYST > 1.25V. Output is latched when * LE_HYST is 0V to 0.4V (referenced to VEE). * * POWER ON RESET (POR) THe output will be high-impedance until the minimum * specified supply voltage (2.4V) is reached. The actual device also has a time * delay that is NOT modeled as it makes short period simualtions impossible. * * OFFSET VOLTAGE: Offset voltage can be adjusted in the macro with device V_VOS * * VEE: In some simualtors (Cadence), it may be necessary to add * a 1 micro-Ohm (1u) resistor in series with VEE to circuit GND (0 node) for proper operation * (to break up the VEE and zero nodes). * * There may be a slight 1.5-2ns start-up delay ***************************************************************************** * source TLV3603 .SUBCKT TLV3603 IN+ IN- V+ V- OUT LEHY X_U4 N21103 N813845 Prop_Delay X_U2 IN-BUFF IN+BUFF N21168 V+_BUFFER V-_BUFFER INPUTRANGE X_U5 N21237 N21168 N786723 V+ V+_BUFFER V- V-_BUFFER N840186 OUT Output_Stage X_U6 V+ V+_BUFFER V- V-_BUFFER Supply_Buffer X_U3 N785573 IN-BUFF N21103 V+_BUFFER V-_BUFFER VHYST HPA_COMPHYS I_IS N843683 V- DC 5.7m X_U7 N21237 N786723 V+_BUFFER V-_BUFFER Supply_Enable X_U1 IN+ IN+BUFF IN- IN-BUFF Input_Buffer I_IBP IN+ V- DC 1u I_IBN IN- V- DC 1u V_VOS N785573 IN+BUFF 0.5m X_U9 LEHY V- 0 V+_BUFFER LATCH VHYST LE_HYST X_U10 N849250 N840186 N813845 LATCH R_RIS N843683 V+ 1u TC=0,0 C_CINPL V- IN+ 0.5p TC=0,0 C_CINNL V- IN- 0.5p TC=0,0 C_CINPH IN+ V+ 0.5p TC=0,0 C_CINNH IN- V+ 0.5p TC=0,0 X_DESD2 IN+ V+ DESD PARAMS: AREA=1.0 X_DESD3 V- IN+ DESD PARAMS: AREA=1.0 X_DESD4 IN- V+ DESD PARAMS: AREA=1.0 X_DESD5 V- IN- DESD PARAMS: AREA=1.0 X_DESD6 V- V+ DESD PARAMS: AREA=1.0 C_CILEHN V- LEHY 0.5p TC=0,0 X_DESD7 LEHY V+ DESD PARAMS: AREA=1.0 C_CILEHH LEHY V+ 0.5p TC=0,0 X_DESD8 V- LEHY DESD PARAMS: AREA=1.0 X_LATCH_DELAY LATCH N849250 LATCH_DELAY .ENDS .SUBCKT LATCH_DELAY VIN VOUT E_E1 N06081 0 VIN 0 2 R_RT1 N059950 N06081 50 TC=0,0 T_T1 N059950 0 VOUT 0 Z0=50 TD=1n R_RT2 0 VOUT 50 TC=0,0 .ENDS .SUBCKT LATCH LATCH OUT VIN X_U1 VIN N11903 VLOGIC 0 INVERTER X_U3 OUT N12289 N11943 VLOGIC 0 NORGATE X_U2 N11909 N11943 OUT VLOGIC 0 NORGATE X_U4 N11903 N11937 N11909 VLOGIC 0 ANDGATE V_V7 N12017 0 5 X_U5 N11937 VIN N12289 VLOGIC 0 ANDGATE X_U6 LATCH N11937 N12017 N12181 VLOGIC 0 DIGLEVSHIFT V_V1 VLOGIC 0 5 V_V8 N12181 0 0 .ENDS .SUBCKT Input_Buffer IN+ IN+_BUFF IN- IN-_BUFF X_U1 IN+ IN- IN+_BUFF IN-_BUFF SUPPLY_BUFFER1 .ENDS .SUBCKT Supply_Enable EN POR V+_BUFFER V-_BUFFER X_U5 N16973 N20377 EN 1V 0 VCC_Range X_U15 N20310 N16973 POR 1V 0 VCC_Range X_U13 V+_BUFFER V-_BUFFER N16973 1V 0 Difference V_VS_MIN_SET N20310 0 2.399 V_VS_MAX_SET N20377 0 5.51 V_VLOGIC 1V 0 1 .ENDS .SUBCKT Supply_Buffer V+ V+_BUFFER V- V-_BUFFER X_U1 V+ V- V+_BUFFER V-_BUFFER SUPPLY_BUFFER1 .ENDS .SUBCKT Output_Stage EN IN_RANGE POR V+ V+_BUFFER V- V-_BUFFER VIN VOUT X_SMID CONTROL_MID 0 N778484 MID Output_Stage_SMID X_U3 VIN N774212 V+_BUFFER V-_BUFFER V+ N774290 DIGLEVSHIFT X_U7 MID V+_BUFFER V-_BUFFER MID_SUPPLY V_VLOGIC 1V 0 1 V_V1 V+ N774290 2 X_SHIZ CONTROL_HIZ 0 N778484 N778496 Output_Stage_SHIZ X_U8 POR IN_RANGE EN EN CONTROL_HIZ 1V 0 4ORGATE X_U9 CONTROL_HIZ N789513 1V 0 INVERTER X_U10 N789513 POR CONTROL_MID 1V 0 ORGATE L_L1 N778484 VOUT 1n C_COUTH VOUT V+ 0.5p TC=0,0 C_COUTL V- VOUT 0.5p TC=0,0 X_DESD1 VOUT V+ DESD PARAMS: AREA=1.0 X_DESD2 V- VOUT DESD PARAMS: AREA=1.0 X_SVOH N774212 N774290 N8491902 V+ Output_Stage_SVOH X_SVOL N774212 N774290 V- N850209 Output_Stage_SVOL R_ROUTH N778496 N8491902 60 TC=0,0 R_ROUTH1 N850209 N778496 60 TC=0,0 .ENDS .SUBCKT INPUTRANGE INN INP INRANGE V+_BUFFER V-_BUFFER V_VCMNP N20415 V-_BUFFER -0.3 V_VCMPN N202710 V+_BUFFER 0.3 X_U1 N20155 INP N20826 V+_BUFFER V-_BUFFER VINRANGE_393 V_VCMPP N20155 V+_BUFFER 0.3 V_VCMNN N20539 V-_BUFFER -0.3 X_U21 N202710 INN N20833 V+_BUFFER V-_BUFFER VINRANGE_393 X_U22 INP N20415 N20840 V+_BUFFER V-_BUFFER VINRANGE_393 X_U23 INN N20539 N20531 V+_BUFFER V-_BUFFER VINRANGE_393 X_U24 N20826 N20833 N20840 N20531 INRANGE V+_BUFFER V-_BUFFER 4ORGATE .ENDS .SUBCKT Prop_Delay VIN VOUT T_TPD N03175 0 VOUT 0 Z0=50 TD=2.5n R_RT 0 VOUT 50 TC=0,0 E_E1 N03179 0 VIN 0 2 R_RS N03175 N03179 50 TC=0,0 .ENDS .subckt Output_Stage_SMID 1 2 3 4 S_SMID 3 4 1 2 _SMID RS_SMID 1 2 1G .MODEL _SMID VSWITCH Roff=1e12 Ron=1.0 Voff=1 Von=0 .ends Output_Stage_SMID .subckt Output_Stage_SHIZ 1 2 3 4 S_SHIZ 3 4 1 2 _SHIZ RS_SHIZ 1 2 1G .MODEL _SHIZ VSWITCH Roff=1e12 Ron=1.0 Voff=1 Von=0 .ends Output_Stage_SHIZ .subckt Output_Stage_SVOH 1 2 3 4 S_SVOH 3 4 1 2 _SVOH RS_SVOH 1 2 1G .MODEL _SVOH VSWITCH Roff=1e12 Ron=1.0 Voff=0 Von=1 .ends Output_Stage_SVOH .subckt Output_Stage_SVOL 1 2 3 4 S_SVOL 3 4 1 2 _SVOL RS_SVOL 1 2 1G .MODEL _SVOL VSWITCH Roff=1e12 Ron=1.0 Voff=1 Von=0 .ends Output_Stage_SVOL ***************************************************** .subckt DESD AN CAT + params: + AREA=1.0 + IS=10f + RS=5 + BV=100 D_DESD AN CAT model22 {area} .model model22 d + is={IS} + rs={RS} + bv={BV} .ends DESD .SUBCKT SUPPLY_BUFFER1 1 2 VDD_NEW VSS_NEW EVDD_NEW VDD_NEW 0 VALUE = {V(1)} EVSS_NEW VSS_NEW 0 VALUE = {V(2)} .ENDS .SUBCKT INVERTER 1 2 VDD VSS E2 2 0 VALUE = { IF( V(1)> (V(VDD)+V(VSS))/2, V(VSS), V(VDD) ) } C1 1 0 1e-12 .ENDS .SUBCKT NORGATE 1 2 OUT VDD VSS EOUT OUT2 0 VALUE = { IF( ((V(1)< (V(VDD)+V(VSS))/2 ) & (V(2)< (V(VDD)+V(VSS))/2 )), V(VDD), V(VSS) ) } R1 OUT2 OUT 1 C1 OUT 0 1e-12 .ENDS .SUBCKT ANDGATE 1 2 3 VDD VSS E1 4 0 VALUE = { IF( ((V(1)> (V(VDD)+V(VSS))/2 ) & (V(2)> (V(VDD)+V(VSS))/2 )), V(VDD), V(VSS) ) } R1 4 3 1 C1 3 0 1e-12 .ENDS .SUBCKT DIGLEVSHIFT 1 2 VDD_OLD VSS_OLD VDD_NEW VSS_NEW E1 3 0 VALUE = { IF( V(1) < (V(VDD_OLD)+V(VSS_OLD))/2, V(VSS_NEW), V(VDD_NEW) ) } R1 3 2 1 C1 2 0 1e-12 .ENDS .SUBCKT VINRANGE_393 1 2 OUT VDD VSS EOUT OUT2 0 VALUE = { IF( ( V(1) >= V(2) ), V(VSS), V(VDD) ) } R1 OUT2 OUT 1 C1 OUT 0 1e-12 .ENDS .SUBCKT 4ORGATE 1 2 3 4 5 VDD VSS E1 6 0 VALUE = { IF( ((V(1)> (V(VDD)+V(VSS))/2 ) | (V(2)> (V(VDD)+V(VSS))/2 ) | (V(3)> (V(VDD)+V(VSS))/2 ) | (V(4)> (V(VDD)+V(VSS))/2 )), V(VDD), V(VSS) ) } R1 5 6 1 .ENDS .SUBCKT HPA_COMPHYS INP INN OUT_OUT VDD VSS VHYS EVMID VMID 0 VALUE = { ( V(VDD) + V(VSS) )/2 } EVH VH 0 VALUE = { ( V(VHYS)/2) } EINNNEW INNNEW 0 VALUE = { IF( ( V(OUT_OUT) < V(VMID) ),(V(INN) + (V(VH))),( V(INN) - V(VH) ) ) } EOUT OUT 0 VALUE = { IF( ( V(INP) > V(INNNEW) ), V(VDD), V(VSS) ) } R1 OUT OUT_OUT 1 C1 OUT_OUT 0 1e-12 .ENDS .SUBCKT ORGATE 1 2 3 VDD VSS E1 4 0 VALUE = { IF( ((V(1)< (V(VDD)+V(VSS))/2 ) & (V(2)< (V(VDD)+V(VSS))/2 )), V(VSS), V(VDD) ) } R1 4 3 1 C1 3 0 1e-12 .ENDS .SUBCKT MID_SUPPLY OUT VDD VSS EVMID VMID 0 VALUE = { ( V(VDD) + V(VSS) )/2 } EOUT OUT 0 VALUE = {V(VMID)} .ENDS .SUBCKT Difference 1 2 OUT VDD VSS EOUT OUT1 0 VALUE = { V(1)- V(2)} R1 OUT1 OUT 1 *C1 OUT 0 1e-12 .ENDS .SUBCKT VCC_Range 1 2 OUT VDD VSS EOUT OUT2 0 VALUE = { IF( ( V(1) >= V(2) ), V(VDD), V(VSS) ) } R1 OUT OUT2 1 C1 OUT 0 1e-12 .ENDS .SUBCKT LE_HYST LEHYST V- V-_BUF V+_BUF LATCH_OUT HYST_OUT V_VLATCH N00729 V- 1.25 R_RPU N00729 LEHYST 40k TC=0,0 E_EIN VLE V-_BUF LEHYST V- 1 R_R1 V-_BUF LATCH_OUT 1k TC=0,0 R_R2 V-_BUF VLE 1k TC=0,0 R_R3 V-_BUF HYST_OUT 1k TC=0,0 E_ELATCH LATCH_OUT V-_BUF VALUE = { IF( V(VLE)<= 0.4, 0, 5 ) } *E_EHYST HYST_OUT V-_BUF VALUE = { IF( V(VLE)<= 1.25,V(VLE),0 ) } E_EHYST HYST_OUT V-_BUF TABLE {V(VLE)} = (0.4,0) +(0.5,0.0636) +(0.55,0.0636) +(0.6,0.0636) +(0.65,0.0636) +(0.7,0.0635) +(0.71,0.0636) +(0.72,0.0635) +(0.73,0.0636) +(0.74,0.0634) +(0.75,0.0635) +(0.76,0.0638) +(0.77,0.0637) +(0.78,0.0637) +(0.79,0.0637) +(0.8,0.0636) +(0.81,0.0636) +(0.82,0.0636) +(0.83,0.0636) +(0.84,0.0425) +(0.85,0.0411) +(0.86,0.0398) +(0.87,0.0386) +(0.88,0.0371) +(0.89,0.0359) +(0.9,0.0347) +(0.91,0.0334) +(0.92,0.032) +(0.93,0.0309) +(0.94,0.0296) +(1,0.0223) +(1.05,0.0164) +(1.1,0.0108) +(1.15,0.0056) +(1.2,0.0007) +(1.25,0) .ENDS .model MOUTN NMOS VTO=0.7, KP=0.12, RS=30 *$ .model MOUTP PMOS VTO=-0.7, KP=0.12, RS=30 *$